45 research outputs found
Recommended from our members
Notch Signaling and T-Helper Cells in EAE/MS
The Notch signaling pathway preservation across species hints to the indispensable role it plays during evolution. Over the last decade the science community has extensively studied the Notch signaling pathway, with Notch emerging as a key player in embryogenesis, tissue homeostasis, angiogenesis, and immunoregulation. Multiple sclerosis (MS) is an incurable yet treatable autoimmune chronic inflammatory disease of the central nervous system. The aim of this review is to provide a brief description of the Notch signaling pathway, and summarize the current literature implicating Notch in the pathogenesis of MS
Potential Application of Tregitopes as Immunomodulating Agents in Multiple Sclerosis
The induction of immunologic tolerance is an important clinical goal in autoimmunity. CD4+ regulatory T (Treg) cells, defined by the expression of the transcription factor forkhead box P3 (FoxP3), play a central role in the control of autoimmune responses. Quantitative and qualitative defects of Tregs have been postulated to contribute to failed immune regulation in multiple sclerosis (MS) and other autoimmune diseases. This paper highlights the potential uses of T regulatory cell epitopes (Tregitopes), natural Treg epitopes found to be contained in human immunoglobulins, as immunomodulating agents in MS. Tregitopes expand Treg cells and induce “adaptive Tregs” resulting in immunosuppression and, therefore, are being considered as a potential therapy for autoimmune diseases. We will compare Tregitopes versus intravenous immunoglobulin (IVIg) in the treatment of EAE with emphasis on the potential applications of Tregitope for the treatment of MS
Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1–/– NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS
Polygenic risk associated with Alzheimer’s disease and other traits influences genes involved in T cell signaling and activation
IntroductionT cells, known for their ability to respond to an enormous variety of pathogens and other insults, are increasingly recognized as important mediators of pathology in neurodegeneration and other diseases. T cell gene expression phenotypes can be regulated by disease-associated genetic variants. Many complex diseases are better represented by polygenic risk than by individual variants.MethodsWe first compute a polygenic risk score (PRS) for Alzheimer’s disease (AD) using genomic sequencing data from a cohort of Alzheimer’s disease (AD) patients and age-matched controls, and validate the AD PRS against clinical metrics in our cohort. We then calculate the PRS for several autoimmune disease, neurological disorder, and immune function traits, and correlate these PRSs with T cell gene expression data from our cohort. We compare PRS-associated genes across traits and four T cell subtypes.ResultsSeveral genes and biological pathways associated with the PRS for these traits relate to key T cell functions. The PRS-associated gene signature generally correlates positively for traits within a particular category (autoimmune disease, neurological disease, immune function) with the exception of stroke. The trait-associated gene expression signature for autoimmune disease traits was polarized towards CD4+ T cell subtypes.DiscussionOur findings show that polygenic risk for complex disease and immune function traits can have varying effects on T cell gene expression trends. Several PRS-associated genes are potential candidates for therapeutic modulation in T cells, and could be tested in in vitro applications using cells from patients bearing high or low polygenic risk for AD or other conditions
Innate and adaptive immunity in human epilepsies
Inflammatory mechanisms have been increasingly implicated in the origin of seizures and epilepsy. These mechanisms are involved in the genesis of encephalitides in which seizures are a common complaint. Experimental and clinical evidence suggests different inflammatory responses in the brains of patients with epilepsy depending on the etiology. In general, activation of both innate and adaptive immunity plays a role in refractory forms of epilepsy. Epilepsies in which seizures develop after infiltration of cells of the adaptive immune system in the central nervous system (CNS) include a broad range of epileptic disorders with different (known or unknown) etiologies. Infiltration of lymphocytes is observed in autoimmune epilepsies, especially the classical paraneoplastic encephalitides with antibodies against intracellular tumor antigens. The presence of lymphocytes in the CNS also has been found in focal cerebral dysplasia type 2 and in cortical tubers. Various autoantibodies have been shown to be associated with temporal lobe epilepsy (TLE) and hippocampal sclerosis of unknown etiology, which may be due to the presence of viral DNA. During the last decade, an increasing number of antineuronal autoantibodies directed against membranous epitopes have been discovered and are associated with various neurologic syndromes, including limbic encephalitis. A major challenge in epilepsy is to define biomarkers, which would allow the recognition of patient populations who might benefit from immune-modulatory therapies. Some peripheral inflammatory markers appear to be differentially expressed in patients with medically controlled and medic
Recommended from our members
The Novel Therapeutic Effect of Phosphoinositide 3-Kinase-γ Inhibitor AS605240 in Autoimmune Diabetes
Type 1 diabetes (T1D) remains a major health problem worldwide, with a steadily rising incidence yet no cure. Phosphoinositide 3-kinase-γ (PI3Kγ), a member of a family of lipid kinases expressed primarily in leukocytes, has been the subject of substantial research for its role in inflammatory diseases. However, the role of PI3Kγ inhibition in suppressing autoimmune T1D remains to be explored. We tested the role of the PI3Kγ inhibitor AS605240 in preventing and reversing diabetes in NOD mice and assessed the mechanisms by which this inhibition abrogates T1D. Our data indicate that the PI3Kγ pathway is highly activated in T1D. In NOD mice, we found upregulated expression of phosphorylated Akt (PAkt) in splenocytes. Notably, T regulatory cells (Tregs) showed significantly lower expression of PAkt compared with effector T cells. Inhibition of the PI3Kγ pathway by AS605240 efficiently suppressed effector T cells and induced Treg expansion through the cAMP response element-binding pathway. AS605240 effectively prevented and reversed autoimmune diabetes in NOD mice and suppressed T-cell activation and the production of inflammatory cytokines by autoreactive T cells in vitro and in vivo. These studies demonstrate the key role of the PI3Kγ pathway in determining the balance of Tregs and autoreactive cells regulating autoimmune diabetes
Recommended from our members
Foxo1 Promotes Th9 Cell Differentiation and Airway Allergy
T helper 9 (Th9) cells are effector CD4+ T cells that are characterized by the production of interleukin-9 (IL-9) and have been associated with allergic responses. Here, we found that the expression of the transcription factor forkhead box O1 (Foxo1) was induced in Th9 and Foxo1 plays a crucial role in the differentiation of Th9 cells. Pharmacological inhibition of Foxo1 or genetic disruption of Foxo1 in CD4+ T cells caused a reduction in IL-9 expression while upregulating IL-17A and IFNγ production. Furthermore, chromatin immunoprecipitation (ChIP) followed by luciferase assays revealed direct binding of Foxo1 to both the Il9 and Irf4 promoters and induces their transactivation. Lastly, adoptive transfer of Th9 cells into lungs induced asthma-like symptoms that were ameliorated by Foxo1 inhibitor, AS1842856. Together, our findings demonstrate a novel regulator of Th9 cells with a direct implication in allergic inflammation
Defects in CD4+ T cell LFA‐1 integrin‐dependent adhesion and proliferation protect Cd47−/− mice from EAE
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141316/1/jlb0493.pd
Galectin-1 Deactivates Classically Activated Microglia and Protects from Inflammation-Induced Neurodegeneration
SummaryInflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS
Recommended from our members
MS AHI1 genetic risk promotes IFNγ+ CD4+ T cells
Objective: To study the influence of the Abelson helper integration site 1 (AHI1) locus associated with MS susceptibility on CD4+ T cell function. Methods: We characterized the chromatin state of T cells in the MS-associated AHI1 linkage disequilibrium (LD) block. The expression and the role of the AHI1 variant were examined in T cells from genotyped healthy subjects who were recruited from the PhenoGenetic Project, and the function of AHI1 was explored using T cells from Ahi1 knockout mice. Results: Chromatin state analysis reveals that the LD block containing rs4896153, which is robustly associated with MS susceptibility (odds ratio 1.15, p = 1.65 × 10−13), overlaps with strong enhancer regions that are present in human naive and memory CD4+ T cells. Relative to the rs4896153A protective allele, the rs4896153T susceptibility allele is associated with decreased AHI1 mRNA expression, specifically in naive CD4+ T cells (p = 1.73 × 10−74, n = 213), and we replicate this effect in an independent set of subjects (p = 2.5 × 10−9, n = 32). Functional studies then showed that the rs4896153T risk variant and the subsequent decreased AHI1 expression were associated with reduced CD4+ T cell proliferation and a specific differentiation into interferon gamma (IFNγ)–positive T cells when compared with the protective rs4896153A allele. This T cell phenotype was also observed in murine CD4+ T cells with genetic deletion of Ahi1. Conclusions: Our findings suggest that the effect of the AHI1 genetic risk for MS is mediated, in part, by enhancing the development of proinflammatory IFNγ+ T cells that have previously been implicated in MS and its mouse models