8 research outputs found

    Benchmarking preconditioned boundary integral formulations for acoustics

    Full text link
    The boundary element method (BEM) is an efficient numerical method for simulating harmonic wave scattering. It uses boundary integral formulations of the Helmholtz equation at the interfaces of piecewise homogeneous domains. The discretisation of its weak formulation leads to a dense system of linear equations, which is typically solved with an iterative linear method such as GMRES. The application of BEM to simulating wave scattering at large-scale geometries is only feasible when compression and preconditioning techniques reduce the computational footprint. Furthermore, many different boundary integral equations exist that solve the same boundary value problem. The choice of preconditioner and boundary integral formulation is often optimised for a specific configuration, depending on the geometry, material characteristics, and driving frequency. On the one hand, the design flexibility for the BEM can lead to fast and accurate schemes. On the other hand, efficient and robust algorithms are difficult to achieve without expert knowledge of the BEM intricacies. This study surveys the design of boundary integral formulations for acoustics and their acceleration with operator preconditioners. Extensive benchmarking provide valuable information on the computational characteristics of several hundred different models for multiple scattering and transmission of acoustic wave fields

    Frequency-robust preconditioning of boundary integral equations for acoustic transmission

    Full text link
    The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma

    The Boundary Element Method for Acoustic Transmission with Nonconforming Grids

    Full text link
    Acoustic wave propagation through a homogeneous material embedded in an unbounded medium can be formulated as a boundary integral equation and accurately solved with the boundary element method. The computational efficiency deteriorates at high frequencies due to the increase in mesh size with a fixed number of elements per wavelength and also at high material contrasts due to the ill-conditioning of the linear system. This study presents the design of boundary element methods feasible for nonconforming surface meshes at the material interface. The nonconforming algorithm allows for independent grid generation, improves flexibility, and reduces the degrees of freedom. It works for different boundary integral formulations for Helmholtz transmission problems, operator preconditioning, and coupling with finite element solvers. The extensive numerical benchmarks at canonical configurations and an acoustic foam model confirm the significant improvements in computational efficiency when employing the nonconforming grid coupling in the boundary element method

    Acoustical Society of America - Nov 2015

    No full text

    Frequency-robust preconditioning of boundary integral equations for acoustic transmission

    No full text
    The scattering and transmission of harmonic acoustic waves at a penetrable material are commonly modelled by a set of Helmholtz equations. This system of partial differential equations can be rewritten into boundary integral equations defined at the surface of the objects and solved with the boundary element method (BEM). High frequencies or geometrical details require a fine surface mesh, which increases the number of degrees of freedom in the weak formulation. Then, matrix compression techniques need to be combined with iterative linear solvers to limit the computational footprint. Moreover, the convergence of the iterative linear solvers often depends on the frequency of the wave field and the objects' characteristic size. Here, the robust PMCHWT formulation is used to solve the acoustic transmission problem. An operator preconditioner based on on-surface radiation conditions (OSRC) is designed that yields frequency-robust convergence characteristics. Computational benchmarks compare the performance of this novel preconditioned formulation with other preconditioners and boundary integral formulations. The OSRC preconditioned PMCHWT formulation effectively simulates large-scale problems of engineering interest, such as focused ultrasound treatment of osteoid osteoma

    Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models

    Get PDF
    Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular-spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10\% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.Comment: 18 pages, 7 figure
    corecore