29 research outputs found

    Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures

    No full text
    The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day−1 was observed in modified Bold’s basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3− as a nitrogen source achieved only 1.07 day−1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day−1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41–0.50 g L−1 day−1 when cultivated in BBM, whereas biomass productivity of 0.32–0.35 g L−1 day−1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields

    Comparison of the Photoautotrophic Growth Regimens of Chlorella sorokiniana in a Photobioreactor for Enhanced Biomass Productivity

    No full text
    Microalgae have a wide industrial potential because of their high metabolic diversity and plasticity. Selection of optimal cultivation methods is important to optimize multi-purpose microalgal biotechnologies. In this research, Chlorella sorokiniana AM-02 that was isolated from a freshwater lake was cultured under various high photosynthetic photon flux density (PPFD) conditions and CO2 gas levels in standard Bold’s basal medium (BBM). Furthermore, a wide range of nitrate levels (180–1440 mg L−1) was tested on the growth of C. sorokiniana. Microalgae growth, pigment concentration, medium pH, exit gas composition, as well as nitrate, phosphate, and sulfate levels were measured during an experimental period. The preferred high PPFD and optimal CO2 levels were found to be 1000–1400 μmol photons m−2 s−1 and 0.5–2.0% (v/v), respectively. The addition of nitrate ions (up to 1440 mg L−1) to the standard growth medium increased final optical density (OD750), cell count, pigment concentration, and total biomass yield but decreased the initial growth rate at high nitrate levels. Our findings can serve as the basis for a robust photoautotrophic cultivation system to maximize the productivity of large-scale microalgal cultures

    Anaerobic Digestion of Chicken Manure in the Presence of Magnetite, Granular Activated Carbon, and Biochar: Operation of Anaerobic Reactors and Microbial Community Structure

    No full text
    The influence of magnetite nanoparticles, granular activated carbon (GAC), and biochar, as well as their combinations on the anaerobic digestion of chicken manure and the structure of microbial communities was studied. The addition of magnetite, GAC, and biochar increased the rate of methane production and the total methane yield. It has been observed that these additives stimulated anaerobic microorganisms to reduce the concentration of accumulated volatile organic acids. Various bacterial species within the classes Bacteroidia and Clostridia were found at higher levels in the anaerobic reactors but in different proportions depending on the experiment. Members of the genera Methanosarcina, Methanobacterium, Methanothrix, and Methanoculleus were mainly detected within the archaeal communities in the anaerobic reactors. Compared to the 16S rRNA gene-based study, the mcrA gene approach allowed a higher level of Methanosarcina in the system with GAC + magnetite to be detected. Based on our findings, the combined use of granular activated carbon and magnetite at appropriate dosages will improve biomethane production

    Growth Efficiency of <i>Chlorella sorokiniana</i> in Synthetic Media and Unsterilized Domestic Wastewater

    No full text
    Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+–N concentration to 360 mg L−1 and adding extra PO43−–P and SO42−–S (up to 80 and 36 mg L−1, respectively) contributed to an increase in the total biomass levels (5.7–5.9 g L−1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L−1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day−1, a biomass productivity of 0.21 g L−1 day−1, and 100% NH4+–N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water

    Assessment of <i>Chlorella sorokiniana</i> Growth in Anaerobic Digester Effluent

    No full text
    Microalgae are considered a potential source of valuable compounds for multiple purposes and are potential agents for bioremediation of aquatic environments contaminated with different pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically digested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The results showed a specific growth rate ranging between 0.82 and 1.45 day−1, while the final biomass yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between 0.33 and 0.50 g L−1 day−1. Besides, substantial amounts of ammonium, phosphate, and sulfate were consumed by C. sorokiniana during the experimental period. The predominant bacteria that grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium, and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microorganisms. Finally, these results show that anaerobically digested agricultural waste materials are a good substitute for growth media for green microalgae; however, phosphate and sulfate levels must also be controlled in the media to maintain adequate growth of microalgae

    Assessment of Chlorella sorokiniana Growth in Anaerobic Digester Effluent

    No full text
    Microalgae are considered a potential source of valuable compounds for multiple purposes and are potential agents for bioremediation of aquatic environments contaminated with different pollutants. This work evaluates the use of agricultural waste, unsterilized and anaerobically digested, to produce biomass from a strain of Chlorella sorokiniana. Furthermore, the presence of bacteria in these wastes was investigated based on the bacterial 16S rRNA gene sequencing. The results showed a specific growth rate ranging between 0.82 and 1.45 day−1, while the final biomass yield in different digestate-containing treatments (bacterial-contaminated cultures) ranged between 0.33 and 0.50 g L−1 day−1. Besides, substantial amounts of ammonium, phosphate, and sulfate were consumed by C. sorokiniana during the experimental period. The predominant bacteria that grew in the presence of C. sorokiniana in the effluent-containing treatments belonged to the genera Chryseobacterium, Flavobacterium, Sphingomonas, Brevundimonas, Hydrogenophaga, Sphingobacterium, and Pseudomonas. Therefore, this microalga can tolerate and grow in the presence of other microorganisms. Finally, these results show that anaerobically digested agricultural waste materials are a good substitute for growth media for green microalgae; however, phosphate and sulfate levels must also be controlled in the media to maintain adequate growth of microalgae

    Anaerobic Digestion of Chicken Manure Assisted by Carbon Nanotubes: Promotion of Volatile Fatty Acids Consumption and Methane Production

    No full text
    In this study, the effect of different concentrations of carbon nanotubes (Taunit-M; 0.5–6.5 g L−1) on the efficiency of anaerobic digestion of chicken manure is investigated. The highest positive effect on the specific production of methane is obtained when 5.0 g L−1 of carbon nanotubes are added to the anaerobic reactors. In addition, carbon nanotubes at these concentrations stimulate the biodegradation of volatile fatty acids, mainly acetate, butyrate, and finally propionate. The maximum production rate of methane increases by 15–16% in the presence of carbon nanotubes (5.0–6.5 g L−1). Also, addition of carbon nanotubes at certain concentrations increases total methane production. Finally, the addition of carbon nanotubes to the anaerobic reactors is found to the favor consumption of volatile fatty acids and improve the methane production kinetics and productivity during the anaerobic digestion of chicken manure

    Growth Characteristics of <i>Chlorella sorokiniana</i> in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures

    No full text
    The cultivation of microalgae requires the selection of optimal parameters. In this work, the effect of various forms of nitrogen on the growth and productivity of Chlorella sorokiniana AM-02 when cultivated at different temperatures was evaluated. Regardless of the temperature conditions, the highest specific growth rate of 1.26 day−1 was observed in modified Bold’s basal medium (BBM) with NH4+ as a nitrogen source, while the highest specific growth rate in BBM with NO3− as a nitrogen source achieved only 1.07 day−1. Moreover, C. sorokiniana grew well in medium based on anaerobic digester effluent (ADE; after anaerobic digestion of chicken/cow manure) with the highest growth rate being 0.92 day−1. The accumulation of proteins in algal cells was comparable in all experiments and reached a maximum of 42% of dry weight. The biomass productivity reached 0.41–0.50 g L−1 day−1 when cultivated in BBM, whereas biomass productivity of 0.32–0.35 g L−1 day−1 was obtained in ADE-based medium. The results, based on a bacterial 16S rRNA gene sequencing approach, revealed the growth of various bacterial species in ADE-based medium in the presence of algal cells (their abundance varied depending on the temperature regimen). The results indicate that biomass from C. sorokiniana AM-02 may be sustainable for animal feed production considering the high protein yields

    Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure

    No full text
    In this work, the impact of granular activated carbon (GAC) on the mesophilic and thermophilic anaerobic digestion of chicken manure and the structure of microbial communities was investigated. These results demonstrated that GAC supplementation effectively enhanced the consumption of produced organic acids in the mesophilic and thermophilic batch tests, accompanied by faster biomethane production in the presence of GAC than from reactors without GAC. However, since the free ammonia level was 3&ndash;6 times higher in the thermophilic reactors, this led to the instability of the anaerobic digestion process of the nitrogen-rich substrate at thermophilic temperatures. Bacteroidia and Clostridia were the two main bacterial classes in the mesophilic reactors, whereas the class Clostridia had a competitive advantage over other groups in the thermophilic systems. The archaeal communities in the mesophilic reactors were mainly represented by representatives of the genera Methanosarcina, Methanobacterium, and Methanotrix, whereas the archaeal communities in the thermophilic reactors were mainly represented by members of the genera Methanosarcina, Methanoculleus, and Methanothermobacter. New data obtained in this research will help control and manage biogas reactors in the presence of GAC at different temperatures

    Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure

    No full text
    In this work, the impact of granular activated carbon (GAC) on the mesophilic and thermophilic anaerobic digestion of chicken manure and the structure of microbial communities was investigated. These results demonstrated that GAC supplementation effectively enhanced the consumption of produced organic acids in the mesophilic and thermophilic batch tests, accompanied by faster biomethane production in the presence of GAC than from reactors without GAC. However, since the free ammonia level was 3–6 times higher in the thermophilic reactors, this led to the instability of the anaerobic digestion process of the nitrogen-rich substrate at thermophilic temperatures. Bacteroidia and Clostridia were the two main bacterial classes in the mesophilic reactors, whereas the class Clostridia had a competitive advantage over other groups in the thermophilic systems. The archaeal communities in the mesophilic reactors were mainly represented by representatives of the genera Methanosarcina, Methanobacterium, and Methanotrix, whereas the archaeal communities in the thermophilic reactors were mainly represented by members of the genera Methanosarcina, Methanoculleus, and Methanothermobacter. New data obtained in this research will help control and manage biogas reactors in the presence of GAC at different temperatures
    corecore