505 research outputs found
The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae
Exposure of intertidal macroalgae during low tide has been linked to the emission of a variety of atmospherically-important trace gases into the coastal atmosphere. In recent years, several studies have investigated the role of inorganic iodine and organoiodides as antioxidants and their emission during exposure to combat oxidative stress, yet the role of organic bromine species during desiccation is less well understood. In this study the emission of dibromomethane (CH2Br2) and bromoform (CHBr3) during exposure and desiccation of two common temperate macroalgae, Fucus vesiculosus and Ulva intestinalis, is reported. Determination of the impact exposure may have on algal physiological processes is difficult as intertidal species are adapted to desiccation and may undergo varying degrees of desiccation before their physiology is affected. For this reason we include comparisons between photosynthetic capacity (Fv/Fm) and halocarbon emissions during a desiccation time series. In addition, the role of rewetting with freshwater to simulate exposure to rain was also investigated. Our results show that an immediate flux of bromocarbons occurs upon exposure, followed by a decline in bromocarbon emissions. We suggest that this immediate bromocarbon pulse may be linked to volatilisation or emissions of existing bromocarbon stores from the algal surface rather than the production of bromocarbons as an antioxidant response
One‐Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles::2. Validation
Culverwell et al. (2023, https://doi.org/10.1029/2023SW003572) described a newone-dimensional variational (1D-Var) retrieval approach for ionospheric GNSS radio occultation (GNSS-RO)measurements. The approach maps a one-dimensional ionospheric electron density profile, modeled withmultiple “Vary-Chap” layers, to bending angle space. This paper improves the computational performance ofthe 1D-Var retrieval using an improved background model and validates the approach by comparing with theCOSMIC-2 profile retrievals, based on an Abel Transform inversion, and co-located (within 200 km) ionosondeobservations using all suitable data from 2020. A three or four layer Vary-Chap in the 1D-Var retrievalshows improved performance compared to COSMIC-2 retrievals in terms of percentage error for the F2 peakparameters (NmF2 and hmF2). Furthermore, skill in retrieval (compared to COSMIC-2 profiles) throughout thebottomside (∼90–300 km) has been demonstrated. With a single Vary-Chap layer the performance is similarbut this improves by approximately 40% when using four-layers
One-Dimensional Variational Ionospheric Retrieval Using Radio Occultation Bending Angles:Part 1 -Theory
A new one-dimensional variational (1D-Var) retrieval method for ionospheric GNSS radio occultation (GNSS-RO) measurements is described. The forward model implicit in the retrieval calculates the bending angles produced by a one-dimensional ionospheric electron density profile, modeled with multiple “Vary-Chap” layers. It is demonstrated that gradient based minimization techniques can be applied to this retrieval problem. The use of ionospheric bending angles is discussed. This approach circumvents the need for Differential Code Bias (DCB) estimates when using the measurements. This new, general retrieval method is applicable to both standard GNSS-RO retrieval problems, and the truncated geometry of EUMETSAT's Metop Second Generation (Metop-SG), which will provide GNSS-RO measurements up to about 600 km above the surface. The climatological a priori information used in the 1D-Var is effectively a starting point for the 1D-Var minimization, rather than a strong constraint on the final solution. In this paper the approach has been tested with 143 COSMIC-1 measurements. We find that the method converges in 135 of the cases, but around 25 of those have high “cost at convergence” values. In the companion paper (Elvidge et al., 2023), a full statistical analysis of the method, using over 10,000 COSMIC-2 measurements, has been made.Key Points• A new method of deriving ionospheric electron densities, using the difference between bending angles at two different frequencies• It is based on a 1D variational retrieval, the solution of which is the best fit to the a priori background and the observations• The forward model assumes the ionosphere to consist of several idealized “Vary-Chap” electron density layer
Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998–2012
Atmospheric concentrations of dichloromethane, CH2Cl2, a regulated toxic air pollutant and minor contributor to stratospheric ozone depletion, were reported to have peaked around 1990 and to be declining in the early part of the 21st century. Recent observations suggest this trend has reversed and that CH2Cl2 is once again increasing in the atmosphere. Despite the importance of ongoing monitoring and reporting of atmospheric CH2Cl2, no time series has been discussed in detail since 2006. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) has analysed the halocarbon content of whole-air samples collected at altitudes of between ~10–12 km via a custom-built container installed on commercial passenger aircraft since 1998, providing a long-term record of CH2Cl2 observations. In this paper we present this unique CH2Cl2 time series, discussing key flight routes which have been used at various times over the past 15 years. Between 1998 and 2012 increases were seen in all northern hemispheric regions and at different altitudes, ranging from ~7–10 ppt in background air to ~13–15 ppt in regions with stronger emissions (equating to a 38–69% increase). Of particular interest is the rising importance of India as a source of atmospheric CH2Cl2: based on CARIBIC data we provide regional emission estimates for the Indian subcontinent and show that regional emissions have increased from 3–14 Gg yr^-1 (1998–2000) to 16–25 Gg yr^-1 (2008). Potential causes of the increasing atmospheric burden of CH2Cl2 are discussed. One possible source is the increased use of CH2Cl2 as a feedstock for the production of HFC-32, a chemical used predominantly as a replacement for ozone-depleting substances in a variety of applications including air conditioners and refrigeration
Massively parallel sequencing of customised forensically informative SNP panels on the MiSeq.
Forensic DNA-based intelligence, or forensic DNA phenotyping, utilises SNPs to infer the biogeographical ancestry and externally visible characteristics of the donor of evidential material. SNaPshot® is a commonly employed forensic SNP genotyping technique, which is limited to multiplexes of 30-40 SNPs in a single reaction and prone to PCR contamination. Massively parallel sequencing has the ability to genotype hundreds of SNPs in multiple samples simultaneously by employing an oligonucleotide sample barcoding strategy. This study of the Illumina MiSeq massively parallel sequencing platform analysed 136 unique SNPs in 48 samples from SNaPshot PCR amplicons generated by five established forensic DNA phenotyping assays comprising the SNPforID 52-plex, SNPforID 34-plex, Eurasiaplex, Pacifiplex and IrisPlex. Approximately 3 GB of sequence data were generated from two MiSeq flow cells and profiles were obtained from just 0.25 ng of DNA. Compared with SNaPshot, an average 98% genotyping concordance was achieved. Our customised approach was successful in attaining SNP profiles from extremely degraded, inhibited, and compromised casework samples. Heterozygote imbalance and sequence coverage in negative controls highlight the need to establish baseline sequence coverage thresholds and refine allele frequency thresholds. This study demonstrates the potential of the MiSeq for forensic SNP analysis
References
www.biogeosciences-discuss.net/11/10673/2014/ doi:10.5194/bgd-11-10673-2014 © Author(s) 2014. CC Attribution 3.0 License. This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalga
Using Extreme Value Theory for Determining the Probability of Carrington-Like Solar Flares
Space weather events can negatively affect satellites, the electricity grid,
satellite navigation systems and human health. As a consequence, extreme space
weather has been added to the UK and other national risk registers. By their
very nature, extreme space weather events occur rarely and, therefore,
statistical methods are required to determine the probability of their
occurrence. Space weather events can be characterised by a number of natural
phenomena such as X-ray (solar) flares, solar energetic particle (SEP) fluxes,
coronal mass ejections and various geophysical indices (Dst, Kp, F10.7). In
this paper extreme value theory (EVT) is used to investigate the probability of
extreme solar flares. Previous work has assumed that the distribution of solar
flares follows a power law. However such an approach can lead to a poor
estimation of the return times of such events due to uncertainties in the tails
of the probability distribution function. Using EVT and GOES X-ray flux data it
is shown that the expected 150-year return level is approximately an X60 flare
whilst a Carrington-like flare is a one in a 100-year event. It is also shown
that the EVT results are consistent with flare data from the Kepler space
telescope mission.Comment: 13 pages, 4 figures; updated content following reviewer feedbac
Future Climate Change in the Thermosphere Under Varying Solar Activity Conditions
Increasing carbon dioxide concentrations in the mesosphere and lower thermosphere are increasing radiative cooling in the upper atmosphere, leading to thermospheric contraction and decreased neutral mass densities at fixed altitudes. Previous studies of the historic neutral density trend have shown a dependence upon solar activity, with larger F10.7 values resulting in lower neutral density reductions. To investigate the impact on the future thermosphere, the Whole Atmosphere Community Climate Model with ionosphere and thermosphere extension has been used to simulate the thermosphere under increasing carbon dioxide concentrations and varying solar activity conditions. These neutral density reductions have then been mapped onto the Shared Socioeconomic Pathways published by the Intergovernmental Panel on Climate Change. The neutral density reductions can also be used as a scaling factor, allowing commonly used empirical models to account for CO2 trends. Under the “best case” SSP1-2.6 scenario, neutral densities reductions at 400 km altitude peak (when CO2 = 474 ppm) at a reduction of 13%–30% (under high and low solar activity respectively) compared to the year 2000. Higher CO2 concentrations lead to greater density reductions, with the largest modeled concentration of 890 ppm resulting in a 50%–77% reduction at 400 km, under high and low solar activity respectively
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Perfluorocarbons (PFCs) are potent greenhouse gases with global warming potentials up to several thousand times greater than CO2 on a 100-year time horizon. The lack of any significant sinks for PFCs means that they have long atmospheric lifetimes of the order of thousands of years. Anthropogenic production is thought to be the only source for most PFCs. Here we report an update on the global atmospheric abundances of the following PFCs, most of which have for the first time been analytically separated according to their isomers: c-octafluorobutane (c-C4F8), n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14), and n-hexadecafluoroheptane (n-C7F16). Additionally, we report the first data set on the atmospheric mixing ratios of perfluoro-2-methylpentane (i-C6F14). The existence and significance of PFC isomers have not been reported before, due to the analytical challenges of separating them. The time series spans a period from 1978 to the present. Several data sets are used to investigate temporal and spatial trends of these PFCs: time series of air samples collected at Cape Grim, Australia, from 1978 to the start of 2018; a time series of air samples collected between July 2015 and April 2017 at Tacolneston, UK; and intensive campaign-based sampling collections from Taiwan. Although the remote “background” Southern Hemispheric Cape Grim time series indicates that recent growth rates of most of these PFCs are lower than in the 1990s, we continue to see significantly increasing mixing ratios that are between 6 % and 27 % higher by the end of 2017 compared to abundances measured in 2010. Air samples from Tacolneston show a positive offset in PFC mixing ratios compared to the Southern Hemisphere baseline. The highest mixing ratios and variability are seen in air samples from Taiwan, which is therefore likely situated much closer to PFC sources, confirming predominantly Northern Hemispheric emissions for most PFCs. Even though these PFCs occur in the atmosphere at levels of parts per trillion molar or less, their total cumulative global emissions translate into 833 million metric tonnes of CO2 equivalent by the end of 2017, 23 % of which has been emitted since 2010. Almost two-thirds of the CO2 equivalent emissions within the last decade are attributable to c-C4F8, which currently also has the highest emission rates that continue to grow. Sources of all PFCs covered in this work remain poorly constrained and reported emissions in global databases do not account for the abundances found in the atmosphere
- …