9 research outputs found

    Microstrip Triplexer using a common triple-mode resonator

    Get PDF
    An all-resonator based triplexer is presented using a double-stub-loaded resonator (DSLR) that acts as a common resonator at the junction of the three channels. The open stub DSLR has been analysed using even and odd-mode method to reveal the relationship between the three resonant modes. The design offers flexibility of frequency selection. The DSLR resonator is coupled with three sets of hairpin resonators to form the triplexer at 1.8, 2.1, and 2.6 GHz for mobile communication applications. The measurement results are in very good agreement with the simulations

    Mutual Coupling Reduction with a novel Fractal Electromagnetic Band Gap Structure

    Get PDF
    This work shows the effect of a novel Fractal based Electromagnetic Band Gap (FEBG) structure between dual PIFAs antenna elements. The FEBG structure without any shorting pins builds on a well-known fractal structure called Sierpinski carpet, where two iterations have been applied as a uniplanar EBG between dual PIFAs elements to increase the isolation. The proposed antenna can operate at approximately 2.65 GHz for wireless Long Term Evolution (LTE) application with compact design dimensions. The simulations are carried out with Ansoft HFSS ver 17.0. The second iterative order FEBG band-gap characteristic is verified using more computationally efficient analysis. An investigation on coupling reduction showed more than 27 dB, and 40 dB in E-plane and H-plane; respectively between the dual antenna elements is achieved for an antenna spacing less than half wavelength. The proposed antennas with and without second iterative order FEBG are fabricated and measured. The measurement results are in good agreement with the simulated results. Moreover, the envelope correlation of antenna elements with the proposed FEBG is quite smaller than that of antenna elements without FEBG, which gives the proposed system an excellent diverse performance and suitable for the use in low-frequency narrow-band MIMO applications

    Enhanced Multiple Speakers’ Separation and Identification for VOIP Applications Using Deep Learning

    No full text
    Institutions have been adopting work/study-from-home programs since the pandemic began. They primarily utilise Voice over Internet Protocol (VoIP) software to perform online meetings. This research introduces a new method to enhance VoIP calls experience using deep learning. In this paper, integration between two existing techniques, Speaker Separation and Speaker Identification (SSI), is performed using deep learning methods with effective results as introduced by state-of-the-art research. This integration is applied to VoIP system application. The voice signal is introduced to the speaker separation and identification system to be separated; then, the “main speaker voice” is identified and verified rather than any other human or non-human voices around the main speaker. Then, only this main speaker voice is sent over IP to continue the call process. Currently, the online call system depends on noise cancellation and call quality enhancement. However, this does not address multiple human voices over the call. Filters used in the call process only remove the noise and the interference (de-noising speech) from the speech signal. The presented system is tested with up to four mixed human voices. This system separates only the main speaker voice and processes it prior to the transmission over VoIP call. This paper illustrates the algorithm technologies integration using DNN, and voice signal processing advantages and challenges, in addition to the importance of computing power for real-time applications

    Novel insights into the synergistic effects of selenium nanoparticles and metformin treatment of letrozole - induced polycystic ovarian syndrome: targeting PI3K/Akt signalling pathway, redox status and mitochondrial dysfunction in ovarian tissue

    No full text
    ABSTRACTPurpose Polycystic ovary syndrome (PCOS) has a series of reproductive and metabolic consequences. Although the link between PCOS, IR, and obesity, their impact on the pathogenesis of PCOS has yet to be determined. Dysfunction of PI3K/AKT pathway has been reported as the main cause of IR in PCOS. This study purposed to explore the effects of selenium nanoparticles (SeNPs) alone and combined with metformin (MET) in a PCOS-IR rat model.Methods After 3 weeks of treatment with SeNPs and/or MET, biochemical analysis of glycemic & lipid profiles, and serum reproductive hormones was performed. Inflammatory, oxidative stress, and mitochondrial dysfunction markers were determined colormetrically. The expression of PI3K and Akt genes were evaluated by Real-time PCR. Histopathological examination and Immunohistochemical analysis of Ki-67 expression were performed.Results The results showed that treatment with SeNPs and/or MET significantly attenuated insulin sensitivity, lipid profile, sex hormones levels, inflammatory, oxidative stress and mitochondrial functions markers. Additionally, PI3K and Akt genes expression were significantly upregulated with improved ovarian histopathological changes.Conclusion Combined SeNPs and MET therapy could be potential therapeutic agent for PCOS-IR model via modulation of the PI3K/Akt pathway, enhancing anti-inflammatory and anti-oxidant properties and altered mitochondrial functions.HighlightsThe strong relationship between obesity, insulin resistance, and polycystic ovarian syndrome.Disturbance of the PI3K/Akt signaling pathway is involved in the progression of polycystic ovary syndrome-insulin resistance (PCOS-IR).In PCOS-IR rats, combined SeNPs and metformin therapy considerably alleviated IR by acting on the PI3K/Akt signaling pathway.The combination of SeNPs and metformin clearly repaired ovarian polycystic pathogenesis and improved hormonal imbalance in PCOS-IR rats

    Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat

    No full text
    A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness

    Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat

    No full text
    A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness
    corecore