9 research outputs found
Evaluation of In Vitro Antioxidant, Anti-Obesity, and Anti-Diabetic Activities of
Opuntia ficus cladodes (OFC) are considered one of the wastes that result from opuntia cultivation, and their disposal by traditional methods results in many environmental problems. Therefore, this study was conducted with two aims. The first was the production of OFC gel, and the evaluation of its in vitro antioxidant (by two methods, DPPH and ABTS), anti-obesity, and anti-diabetic activities. The second was an investigation of the effects of different concentrations of this gel (0, 50, and 100%) as an edible coating on the quality of shrimp during 8 days of refrigerated storage. The results showed that this gel was characterised by a high content of ash (10.42%), total carbohydrates (75.17%), and total phenols (19.79 mg GAE/g). OFC gel contained six types of sugars: arabinose, xylose, galactose, rhamnose, glucose, and uronic acid, and the most abundant was xylose (36.72%). It is also clear from the results that the OFC gel had high antioxidant properties, which were higher against DPPH than ABTS at the same concentration. OFC gel showed a high inhibition activity against lipase, α-glycosidase, and α-amylase enzymes, and their IC50 values were 1.43 mg/mL, 0.78 mg/mL, and 0.57 mg/mL, respectively. The results also stated that shrimp coated with OFC gel had lower pH, drip loss, TVB-N, and TBA values through the days of refrigerated storage. Moreover, the shrimp coated with 100% OFC gel were better than those coated with 50% OFC gel. In conclusion, OFC gel showed high potency as active antioxidant, for its enzyme anti-activities, and as an edible coating for shrimp
Technological and Sensory Aspects of Macaroni with Free or Encapsulated Azolla Fern Powder
Azolla might be considered an alternative and promising dietary ingredient for antioxidants. There have not been any reports on the incorporation of free Azolla fern powder (FAP) or its microcapsules in foods, especially fresh pasta, yet. Microencapsulation was used to mask the undesirable taste and odour of Azolla, as well as to preserve its antioxidant potential. The current study concentrated on two major goals. The first goal was to use alginate as a wall material for FAP encapsulation, as well as to characterise the FAP microcapsule for its encapsulation efficiency, solubility, and thermal stability. The second goal was to assess the impact of integrating FAP or its microcapsules into fresh macaroni on its colour parameters, cooking quality, texture properties, and sensory characteristics. The microspheres had a high encapsulation efficiency (88.19%) and a low water solubility (85.23 g/kg), making them suitable for use in foods that require cooking in water. When compared to free Azolla powder, encapsulation reduced the antioxidant activity loss rate by 67.73%. All the cooking and textural properties of fresh macaroni were not significantly affected, except for water absorption and weight gain, but the overall acceptability index (85.13%) was not affected by microcapsule incorporation
Principles of Nutritional Management in Patients with Liver Dysfunction—A Narrative Review
According to studies, the liver’s ability to perform its physiological functions in the body determines the diet of patients with liver diseases. Malnutrition results from the liver’s inability to metabolize nutrients as a result of chronic liver dysfunctions. Objectives: Reviewing the data about diets and dietary supplements that manage liver dysfunctions nutritionally. Results: Malnutrition is particularly prevalent in cirrhosis patients, according to clinical studies. Because malnutrition has a significant negative impact on morbidity, mortality, and quality of life, it is crucial to evaluate all cirrhosis patients, regardless of etiology or severity. A term of supplemental enteral nutrition may be suggested for patients who do not achieve their nutritional objectives. A detailed nutritional and exercise assessment will enable the development of an individualized treatment plan that includes dietary and exercise plans. The dietary treatment should outline daily calorie targets with a focus on high-quality protein and address any vitamin and micronutrient deficiencies, with a diet high in those nutrients or supplements. Conclusions: While there is evidence to support the use of particular restricted dietary plans and dietary supplements to manage liver diseases, these findings should be regarded as preliminary until they are confirmed in larger randomized controlled clinical trials
Effects of Faba Bean Hull Nanoparticles on Physical Properties, Protein and Lipid Oxidation, Colour Degradation, and Microbiological Stability of Burgers under Refrigerated Storage
The processing of faba beans generates great quantities of hulls, which are high in bioactive compounds with demonstrated radical-inhibiting properties. There is no research on the impact of using faba bean hull nanoparticles (FBH-NPs) to improve the quality and extend the shelf-life of beef products. Hence, the target of this investigation was to assess the inhibiting influence of adding FBH-NPs at two different concentrations (1 and 1.5%) on the physical attributes, lipid and protein oxidation, colour degradation, and microbiological safety of burgers during refrigerated storage (4 ± 1 °C/12 days). The FBH-NPs presented great phenolic content (103.14 ± 0.98 mg GAE/g dw) and antioxidant potential. The water holding capacity and cooking properties in burgers including FBH-NPs were improved during storage. The FBH-NPs significantly (p < 0.05) decreased the reduction rate of redness and lightness during the burger refrigerated storage and the FBH-NPs were more beneficial in preventing cold burger discolouration. In the FBH-NPs-treated burgers, peroxide values, TBARS, and protein carbonyl content were lower than in the control (up to 12 days). The microbiological load of burgers including FBH-NPs was lower than the load of the control during refrigerated storage. The findings revealed that FBH-NPs were more efficient in enhancing the cooking characteristics, retarding lipid or protein oxidation, preventing colour detrition and improving the microbial safety of burgers
Cod Liver Oil’s Encapsulation into Sodium Alginate/Lupin Protein Beads and Its Application in Functional Meatballs’ Preparation
Cod liver oil (CLO) is an essential source of healthy ω-3 fatty acids to be employed in functional meals. However, its autoxidation sensitivity, solubility, and odour present it as challenging to handle. Its encapsulation might mitigate these problems. This research studied using alginate/lupine protein as a wall material for CLO encapsulation as well as to characterise CLO microcapsules for their size, sphericity factor, encapsulation efficiency, morphology (scanning electron microscopy), in vitro release, and thermal stability. In this study, the oxidative stability, quality parameters, and sensory attributes of meatballs enriched with free CLOs and encapsulated CLOs throughout storage at 4 ± 1 °C for 16 days were assessed. The CLO microspheres had a homogeneous round shape, a diameter of 0.82 ± 0.06 mm, a sphericity factor of 0.092 ± 0.01, an encapsulation efficiency of 95.62% ± 1.13%, and an accumulative release rate of 87.10% after 270 min in the stimulated gastrointestinal conditions. Additionally, it was discovered that encapsulated oil was more stable than free CLOs to heat treatments (70–100 °C, 24 h). pH, thiobarbituric acid-reactive substances, peroxide value, conjugated dienes value, and carbonyl content of meatballs enriched with microencapsulated CLOs were significantly lower when compared to free CLOs and/or control samples. CLO microcapsules improved the sensory characteristics of meatballs throughout storage; however, meatballs directly containing CLOs were rejected. Thus, the viability of alginate/LPI complex microcapsules containing CLOs to enrich meat products subjected to storage with refrigeration could be indicated without any change in the characteristics
Evaluation of In Vitro Antioxidant, Anti-Obesity, and Anti-Diabetic Activities of <i>Opuntia ficus</i> Cladodes Gel and Its Application as a Preservative Coating for Shrimp during Refrigerated Storage
Opuntia ficus cladodes (OFC) are considered one of the wastes that result from opuntia cultivation, and their disposal by traditional methods results in many environmental problems. Therefore, this study was conducted with two aims. The first was the production of OFC gel, and the evaluation of its in vitro antioxidant (by two methods, DPPH and ABTS), anti-obesity, and anti-diabetic activities. The second was an investigation of the effects of different concentrations of this gel (0, 50, and 100%) as an edible coating on the quality of shrimp during 8 days of refrigerated storage. The results showed that this gel was characterised by a high content of ash (10.42%), total carbohydrates (75.17%), and total phenols (19.79 mg GAE/g). OFC gel contained six types of sugars: arabinose, xylose, galactose, rhamnose, glucose, and uronic acid, and the most abundant was xylose (36.72%). It is also clear from the results that the OFC gel had high antioxidant properties, which were higher against DPPH than ABTS at the same concentration. OFC gel showed a high inhibition activity against lipase, α-glycosidase, and α-amylase enzymes, and their IC50 values were 1.43 mg/mL, 0.78 mg/mL, and 0.57 mg/mL, respectively. The results also stated that shrimp coated with OFC gel had lower pH, drip loss, TVB-N, and TBA values through the days of refrigerated storage. Moreover, the shrimp coated with 100% OFC gel were better than those coated with 50% OFC gel. In conclusion, OFC gel showed high potency as active antioxidant, for its enzyme anti-activities, and as an edible coating for shrimp
Application of Gurma Melon <i>(Citrullus lantus var. colocynthoides)</i> Pulp-Based Gel Fat Replacer in Mayonnaise
Gurma melon pulp-based gel (GMPG) was examined as a fat replacement in mayonnaise. GMPG was used to partially replace fat in quantities of 25, 50, and 70%, abbreviated as GMPG-25, GMPG-50, and GMPG-70, respectively. Mayonnaise’s physicochemical and sensory properties were studied. The data demonstrated that all low-fat mayonnaises had much lower energy value but significantly higher water content than their full-fat equivalents and that these differences developed as GMPG replacement levels increased. A microstructure analysis revealed compact the packing structures of big droplets in the whole fat sample and a baggy structure network of aggregated tiny droplets in the GMPG-25, GMPG-50, and GMPG-70 samples. There were no significant differences in pH or water activity after one day of storage between the full-fat and low-fat mayonnaises. Mayonnaises with GMPG-50 and GMPG-70 exhibited the same hardness as full-fat, whereas mayonnaises with GMPG-25 were harder than the other samples. Increased mayonnaise whiteness (L* increase and a* and b* reduction) was seen with reductions in fat. All samples had good sensory approval, with the 50% oil mayonnaise appearing to be the most appealing. It has been demonstrated that GMPG is an effective fat replacement agent
Silver Nanoparticle Synthesis by <i>Rumex vesicarius</i> Extract and Its Applicability against Foodborne Pathogens
The consumption of foods polluted with different foodborne pathogens such as fungus, viruses, and bacteria is considered a serious cause of foodborne disease in both humans and animals. Multidrug-resistant foodborne pathogens (MRFP) cause morbidity, death, and substantial economic loss, as well as prolonged hospitalization. This study reports on the use of aqueous Rumex leaf extract (ARLE) in the synthesis of silver nanoparticles (ARLE-AgNPs) with versatile biological activities. The synthesized ARLE-AgNPs had spherical shapes with smooth surfaces and an average hydrodynamic size of 27 nm. ARLE-AgNPs inhibited the growth of Escherichia coli ATCC25721, Pseudomonas aeruginosa ATCC27843, Streptococcus gordonii ATCC49716, Enterococcus faecalis ATCC700813, and Staphylococcus aureus ATCC4342. The ARLE-AgNPs were more active against Escherichia coli ATCC25721 than other harmful bacterial strains (26 ± 3 mm). The zone of inhibition for antibacterial activity ranged between 18 ± 3 mm and 26 ± 3 mm in diameter. The nanoparticles’ MIC values varied from 5.19 µg/mL to 61 µg/mL, while their MBC values ranged from 46 µg/mL to 119 µg/mL. The nanoparticles that were created had antioxidant potential. The cytotoxic activity was tested using normal fibroblast cell lines (L-929), and the enhanced IC50 value (764.3 ± 3.9 g/mL) demonstrated good biological compatibility. These nanoparticles could be evolved into new antibacterial compounds for MRFP prevention
Chitosan-Based Green Pea (<i>Pisum sativum</i> L.) Pod Extract Gel Film: Characterization and Application in Food Packaging
This work focuses on studying the preparation, characterization (physical, mechanical, optical, and morphological properties as well as antioxidant and antimicrobial activities) and packaging application of chitosan (CH)-based gel films containing varying empty green pea pod extract (EPPE) concentrations (0, 1, 3, and 5% w/w). The experiments revealed that adding EPPE to CH increased the thickness (from 0.132 ± 0.08 to 0.216 ± 0.08 mm), density (from 1.13 ± 0.02 to 1.94 ± 0.02 g/cm3), and opacity (from 0.71 ± 0.02 to 1.23 ± 0.04), while decreasing the water vapour permeability, water solubility, oil absorption ratio, and whiteness index from 2.34 to 1.08 × 10−10 g−1 s−1 pa−1, from 29.40 ± 1.23 to 18.75 ± 1.94%, from 0.31 ± 0.006 to 0.08 ± 0.001%, and from 88.10 ± 0.43 to 77.53 ± 0.48, respectively. The EPPE films had better tensile strength (maximum of 26.87 ± 1.38 MPa), elongation percentage (maximum of 58.64 ± 3.00%), biodegradability (maximum of 48.61% after 3 weeks), and migration percentages than the pure CH-gel film. With the addition of EPPE, the antioxidant and antibacterial activity of the film improved. SEM revealed that as EPPE concentration increased, agglomerates formed within the films. Moreover, compared to control samples, packing corn oil in CH-based EPPE gel films slowed the rise of thiobarbituric acid and peroxide values. As an industrial application, CH-based EPPE films have the potential to be beneficial in food packaging