6 research outputs found

    Three-Dimensional Volumetric Assessment of Resected Gliomas Assisted by Horos Imaging Software: Video Case Series of Postoperative Tumor Analyses

    No full text
    Horos (LGPL 3.0; GNU Lesser General Public License, Version 3) is a free, open-source medical image viewer with a user-friendly interface and three-dimensional (3D) volumetric rendering capabilities. We present the use of Horos software as a postoperative tool for residual tumor volume analysis in children with high-grade gliomas (HGG). This is a case series of two pediatric patients with histologically confirmed high-grade gliomas who underwent tumor resection as definitive treatment from June 2011 to June 2019. Volumetric data and extent of resection were obtained via region of interest-based 3D analysis using Horos image-processing software. Horos software provides increased accuracy and confidence in determining the postoperative volume and is useful in assessing the impact of residual volume on outcomes in patients with high-grade gliomas. Horos software is a highly effective means of volumetric analysis for the postoperative analysis of residual volume after maximal safe resection of high-grade gliomas in pediatric patients

    Prevention of Neurological Deficit With Intraoperative Neuromonitoring During Anterior Lumbar Interbody Fusion.

    No full text
    STUDY DESIGN: This was a retrospective cohort study. OBJECTIVE: While intraoperative neuromonitoring (IONM) has been increasingly used in spine surgery to have a real-time evaluation of the neurological injury, we aim here to assess its utility during anterior lumbar interbody fusion (ALIF) and its association with postoperative neurological deficit. SUMMARY OF BACKGROUND DATA: ALIF is a beneficial surgical approach for patients with degenerative disease of the lower lumbar spine who would benefit from increased lordosis and restoration of neuroforaminal height. One risk of ALIF is iatrogenic nerve root injury. IONM may be useful in preventing this injury. MATERIALS AND METHODS: We performed a retrospective cohort study of 111 consecutive patients who underwent ALIF at a tertiary care academic center by 6 spine surgeons. We aimed to describe the association between IONM, postoperative weakness, and factors that predispose our center to using IONM. RESULTS: The 111 patients had a median age of 62 years [interquartile range (IQR): 53-69 y]. Neuromonitoring was used in 67 patients (60.3%) and not used in 44 patients. Seven neuromonitoring patients had IONM changes during the surgery. Three of these patients\u27 surgeries featured intraoperative adjustments to reduce iatrogenic neural injury. The IONM cohort underwent significantly more complex procedures [5 levels (IQR: 3-7) vs. 2 levels (IQR: 2-5), P=0.001]. There was no difference in rates of new or worsened postoperative weakness (IONM: 20.6%, non-IONM: 20.5%). CONCLUSIONS: We demonstrate evidence of the potential benefits of IONM for patients undergoing ALIF. Intraoperative changes in neuromonitoring signals resulted in surgical adjustments that likely prevented neurological deficits postoperatively. IONM was protective so that more complex surgeries did not have a higher rate of postoperative weakness

    Interhemispheric Approach

    No full text
    The interhemispheric approach is the natural route to reach the parafalcine and paraventricular structures through the interhemispheric fissure. In this chapter, we report the main anterior and posterior corridors of the interhemispheric approach

    Pulsatile cerebrospinal fluid dynamics in Chiari I malformation syringomyelia: Predictive value in posterior fossa decompression and insights into the syringogenesis

    No full text
    Pathophysiological mechanisms underlying the syringomyelia associated with Chiari I malformation (CM-1) are still not completely understood, and reliable predictors of the outcome of posterior fossa decompression (PFD) are lacking accordingly. The reported prospective case-series study aimed to prove the existence of a pulsatile, biphasic systolic-diastolic cerebrospinal fluid (CSF) dynamics inside the syrinx associated with CM-1 and to assess its predictive value of patients' outcome after PFD. Insights into the syringogenesis are also reported

    Implantable Intracranial Pressure Sensor with Continuous Bluetooth Transmission via Mobile Application

    No full text
    Hydrocephalus is a clinical disorder caused by excessive cerebrospinal fluid (CSF) buildup in the ventricles of the brain, often requiring permanent CSF diversion via an implanted shunt system. Such shunts are prone to failure over time; an ambulatory intracranial pressure (ICP) monitoring device may assist in the detection of shunt failure without an invasive diagnostic workup. Additionally, high resolution, noninvasive intracranial pressure monitoring will help in the study of diseases such as normal pressure hydrocephalus (NPH) and idiopathic intracranial hypertension (IIH). We propose an implantable, continuous, rechargeable ICP monitoring device that communicates via Bluetooth with mobile applications. The design requirements were met at the lower ICP ranges; the obtained error fell within the idealized ±2 mmHg margin when obtaining pressure values at or below 20 mmHg. The error was slightly above the specified range at higher ICPs (±10% from 20–100 mmHg). The system successfully simulates occlusions and disconnections of the proximal and distal catheters, valve failure, and simulation of A and B ICP waves. The mobile application accurately detects the ICP fluctuations that occur in these physiologic states. The presented macro-scale prototype is an ex-vivo model of an implantable, rechargeable ICP monitoring system that has the potential to measure clinically relevant ICPs and wirelessly provide accessible and continuous data to aid in the workup of shunt failure
    corecore