161 research outputs found
Nonequilibrium fluctuation dissipation relations of interacting Brownian particles driven by shear
We present a detailed analysis of the fluctuation dissipation theorem (FDT)
close to the glass transition in colloidal suspensions under steady shear using
mode coupling approximations. Starting point is the many-particle Smoluchowski
equation. Under shear, detailed balance is broken and the response functions in
the stationary state are smaller at long times than estimated from the
equilibrium FDT. An asymptotically constant relation connects response and
fluctuations during the shear driven decay, restoring the form of the FDT with,
however, a ratio different from the equilibrium one. At short times, the
equilibrium FDT holds. We follow two independent approaches whose results are
in qualitative agreement. To discuss the derived fluctuation dissipation
ratios, we show an exact reformulation of the susceptibility which contains not
the full Smoluchowski operator as in equilibrium, but only its well defined
Hermitian part. This Hermitian part can be interpreted as governing the
dynamics in the frame comoving with the probability current. We present a
simple toy model which illustrates the FDT violation in the sheared colloidal
system.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Analytical Results for a Hole in an Antiferromagnet
The Green's function for a hole moving in an antiferromagnet is derived
analytically in the long-wavelength limit. We find that the infrared divergence
is eliminated in two and higher dimensions so that the quasiparticle weight is
finite. Our results also suggest that the hole motion is polaronic in nature
with a bandwidth proportional to ( is a constant).
The connection of the long-wavelength approximation to the first-order
approximation in the cumulant expansion is also clarified.Comment: 12 papes, 2 figures available upon request, revte
Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis
<p>Abstract</p> <p>Background</p> <p>The Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment.</p> <p>Methods</p> <p>Potency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of <it>in vitro </it>assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed <it>in vitro </it>using colony forming assays. <it>In vivo </it>the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model.</p> <p>Results</p> <p>CP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in <it>in vitro </it>enzyme assays. Dose-dependent inhibition of paw edema was observed <it>in vivo </it>with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the <it>in vitro </it>whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2.</p> <p>Conclusion</p> <p>Results from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.</p
Scaling properties of the ferromagnetic state in the Hubbard model
A numerical scaling analysis is used to show that Nagaoka's ferromagnetic
state in two-dimensional Hubbard model with one hole is supersede by an
antiferromagnetic (AF) state with a discontinuous jump in the total spin due to
the AF coupling as the Hubbard is made finite. The same applies to the
two-hole system, which has a spiral spin structure. We can show, via the
scaling, that the crossover to an AF state is a precursor of a pathological
coalescence of states having the minimum spin and Nagaoka's state at
in the thermodynamic limit.Comment: 10 pages, typeset in LATEX, KA-94-01, 3 figures available upon
request at [email protected]
Impact of essential genes on the success of genome editing experiments generating 3313 new genetically engineered mouse lines
The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps – generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease
The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell
Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche
Understanding the cancer stem cell
The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents
- …