157 research outputs found
The clustering instability of inertial particles spatial distribution in turbulent flows
A theory of clustering of inertial particles advected by a turbulent velocity
field caused by an instability of their spatial distribution is suggested. The
reason for the clustering instability is a combined effect of the particles
inertia and a finite correlation time of the velocity field. The crucial
parameter for the clustering instability is a size of the particles. The
critical size is estimated for a strong clustering (with a finite fraction of
particles in clusters) associated with the growth of the mean absolute value of
the particles number density and for a weak clustering associated with the
growth of the second and higher moments. A new concept of compressibility of
the turbulent diffusion tensor caused by a finite correlation time of an
incompressible velocity field is introduced. In this model of the velocity
field, the field of Lagrangian trajectories is not divergence-free. A mechanism
of saturation of the clustering instability associated with the particles
collisions in the clusters is suggested. Applications of the analyzed effects
to the dynamics of droplets in the turbulent atmosphere are discussed. An
estimated nonlinear level of the saturation of the droplets number density in
clouds exceeds by the orders of magnitude their mean number density. The
critical size of cloud droplets required for clusters formation is more than
m.Comment: REVTeX 4, 15 pages, 2 figures(included), PRE submitte
Turbulent Diffusion and Turbulent Thermal Diffusion of Aerosols in Stratified Atmospheric Flows
The paper analyzes the phenomenon of turbulent thermal diffusion in the Earth
atmosphere, its relation to the turbulent diffusion and its potential impact on
aerosol distribution. This phenomenon was predicted theoretically more than 10
years ago and detected recently in the laboratory experiments. This effect
causes a non-diffusive flux of aerosols in the direction of the heat flux and
results in formation of long-living aerosol layers in the vicinity of
temperature inversions. We demonstrated that the theory of turbulent thermal
diffusion explains the GOMOS aerosol observations near the tropopause (i.e.,
the observed shape of aerosol vertical profiles with elevated concentrations
located almost symmetrically with respect to temperature profile). In
combination with the derived expression for the dependence of the turbulent
thermal diffusion ratio on the turbulent diffusion, these measurements yield an
independent method for determining the coefficient of turbulent diffusion at
the tropopause. We evaluated the impact of turbulent thermal diffusion to the
lower-troposphere vertical profiles of aerosol concentration by means of
numerical dispersion modelling, and found a regular upward forcing of aerosols
with coarse particles affected stronger than fine aerosols.Comment: 19 pages, 10 figure
Turbulent thermal diffusion in a multi-fan turbulence generator with the imposed mean temperature gradient
We studied experimentally the effect of turbulent thermal diffusion in a
multi-fan turbulence generator which produces a nearly homogeneous and
isotropic flow with a small mean velocity. Using Particle Image Velocimetry and
Image Processing techniques we showed that in a turbulent flow with an imposed
mean vertical temperature gradient (stably stratified flow) particles
accumulate in the regions with the mean temperature minimum. These experiments
detected the effect of turbulent thermal diffusion in a multi-fan turbulence
generator for relatively high Reynolds numbers. The experimental results are in
compliance with the results of the previous experimental studies of turbulent
thermal diffusion in oscillating grids turbulence (Buchholz et al. 2004;
Eidelman et al. 2004). We demonstrated that turbulent thermal diffusion is an
universal phenomenon. It occurs independently of the method of turbulence
generation, and the qualitative behavior of particle spatial distribution in
these very different turbulent flows is similar. Competition between turbulent
fluxes caused by turbulent thermal diffusion and turbulent diffusion determines
the formation of particle inhomogeneities.Comment: 9 pages, 9 figure, REVTEX4, Experiments in Fluids, in pres
Anomalous Scalings and Dynamics of Magnetic Helicity
It is demonstrated that the two-point correlation function of the magnetic
helicity in the case of zero mean magnetic field has anomalous scalings for
both, compressible and incompressible turbulent helical fluid flow. The
magnetic helicity in the limit of very high electrical conductivity is
conserved. This implies that the two-point correlation function of the
conserved property does not necessarily have normal scaling. The reason for the
anomalous scalings of the magnetic helicity correlation function is that the
magnetic field in the equation for the two-point correlation function of the
magnetic helicity plays a role of a pumping with anomalous scalings. It is
shown also that when magnetic fluctuations with zero mean magnetic field are
generated the magnetic helicity is very small even if the hydrodynamic helicity
is large. Astrophysical applications of the obtained results are discussed.Comment: 5 pages, REVTEX
Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures
We study a large-scale instability in a sheared nonhelical turbulence that
causes generation of large-scale vorticity. Three types of the background
large-scale flows are considered, i.e., the Couette and Poiseuille flows in a
small-scale homogeneous turbulence, and the "log-linear" velocity shear in an
inhomogeneous turbulence. It is known that laminar plane Couette flow and
antisymmetric mode of laminar plane Poiseuille flow are stable with respect to
small perturbations for any Reynolds numbers. We demonstrate that in a
small-scale turbulence under certain conditions the large-scale Couette and
Poiseuille flows are unstable due to the large-scale instability. This
instability causes formation of large-scale vortical structures stretched along
the mean sheared velocity. The growth rate of the large-scale instability for
the "log-linear" velocity shear is much larger than that for the Couette and
Poiseuille background flows. We have found a turbulent analogue of the
Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of
excitation of turbulent Tollmien-Schlichting waves is associated with a
combined effect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background sheared motions. These
waves can be excited even in a plane Couette flow imposed on a small-scale
turbulence when perturbations of mean velocity depend on three spatial
coordinates. The energy of these waves is supplied by the small-scale sheared
turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres
Magnetic Helicity Tensor for an Anisotropic Turbulence
The evolution of the magnetic helicity tensor for a nonzero mean magnetic
field and for large magnetic Reynolds numbers in an anisotropic turbulence is
studied. It is shown that the isotropic and anisotropic parts of the magnetic
helicity tensor have different characteristic times of evolution. The time of
variation of the isotropic part of the magnetic helicity tensor is much larger
than the correlation time of the turbulent velocity field. The anisotropic part
of the magnetic helicity tensor changes for the correlation time of the
turbulent velocity field. The mean turbulent flux of the magnetic helicity is
calculated as well. It is shown that even a small anisotropy of turbulence
strongly modifies the flux of the magnetic helicity. It is demonstrated that
the tensor of the magnetic part of the alpha-effect for weakly inhomogeneous
turbulence is determined only by the isotropic part of the magnetic helicity
tensor. Astrophysical applications of the obtained results are discussed.Comment: 7 pages, REVTEX
- …