5 research outputs found
Dual buoyant/mucoadhesive macroporous polypropylene microparticles for gastric delivery of repaglinide
Preparation and characterization of dual buoyant/mucoadhesive polypropylene microparticles (MPs) loaded with repaglinide (REP) for gastric drug delivery in order to augment the weak mucoadhesion in the stomach.Porous foam powder MPs were prepared using coating polymers with variable permeability (Eudragit L100, Eudragit RSPO) alone or in combination by the soaking method. Thiolated Eudragit L100 (Eudragit L100-SH) was also synthesized and tried in an attempt to enhance the mucoadhesive properties of MPs. All formulae were characterized for their yield, flow properties, particle size, encapsulation efficiency (EE %), morphology, and drug release and its mechanistics. Possible interactions inside MPs matrix were also elucidated using FTIR study. The suitability of the selected formulae for gastroretention was evaluated by in vitro buoyancy and ex-vivo mucoadhesion studies.All REP-loaded MPs demonstrated a passable powder flow, high yield values, promising floatation and mucoadhesion. Encapsulation efficiency % values were nearly tripled upon addition of Eudragit polymers. Compared to the Eudragit free REP loaded foam powder, all formula showed more sustained release features. Eudragit L100-SH was synthesized and confirmed by FTIR. Furthermore, its incorporation, alone or in combination, exhibited a significant increase in mucoadhesion strength compared to the unmodified one.Dual buoyant/mucoadhesive MPs loaded with REP encourage planning for future in-vivo performance studies for the management of diabetes
Release Mechanisms Behind Polysaccharides-Based Famotidine Controlled Release Matrix Tablets
Polysaccharides, which have been explored to possess gelling properties and a wide margin of safety, were used to formulate single-unit floating matrix tablets by a direct compression technique. This work has the aim to allow continuous slow release of famotidine above its site of absorption. The floating approach was achieved by the use of the low density polypropylene foam powder. Polysaccharides (κ-carrageenan, gellan gum, xyloglucan, and pectin) and blends of polysaccharides (κ-carrageenan and gellan gum) and cellulose ethers (hydroxypropylmethyl cellulose, hydroxypropylcellulose, sodium carboxymethyl cellulose) were tried to modulate the release characteristics. The prepared floating tablets were evaluated for their floating behavior, matrix integrity, swelling studies, in vitro drug release studies, and kinetic analysis of the release data. The differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that changing the polymer matrix system by formulation of polymers blends resulted in formation of molecular interactions which may have implications on drug release characteristics. This was obvious from the retardation in drug release and change in its mechanistics