9 research outputs found

    An Alternative Confirmatory Test for Silver Ion in Qualitative Analysis

    No full text
    The use of ascorbic acid (vitamin C) to reduce aqueous diamminesilver(I) chloride is suggested as a means of reducing the hazardousness of reagents and waste in the confirmatory test for silver ion in the group I qualitative analysis scheme. This eliminates the use of nitric acid in the most widely used qualitative analysis scheme and is less problematic than other alternatives previously suggested

    Small-scale explosivity testing

    No full text
    In the area of energetic materials testing, correlation of small- and large-scale test results is a frequently sought and seldom achieved goal. We have experimented using the cartridge test to obtain a relative ranking of the explosivity of energetic materials. The cartridge test attempts to detonate a 2 gram sample of energetic material confined in a .303″ brass cartridge case with a number 8 blasting cap. Violence of an event was judged by the weight of the main body of the casing remaining attached to the base after detonation. © 1999 Taylor & Francis Group, LLC

    Quantification and aging of the post-blast residue of TNT landmines

    No full text
    Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dintrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually less than 1, whereas pre-blast residues started with ratios above 20. Because with time DNT decreased and ADNT increased, over a month the ratio decreased by a factor of 2. The rate of TNT degradation in soil observed in this study was much slower than that reported when initial concentrations of TNT were lower. Degradation rates yielded half-lives of 40 and 100 days for 2,4-DNT and TNT, respectively

    Trends in explosive contamination

    No full text
    This study sought to assign a rough order of magnitude for the amount of explosive residue likely to be available in real-world searches for clandestine explosives. A variety of explosives (TNT, TATP, HMX, AN, RDX, PETN) in various forms (powder, flake, detonating cord, plastic) were carefully weighed or cut into containers, and the amount of residue inadvertently remaining on the work area, hands, or containers was quantified. This was used to evaluate the spillage potential of each explosive. The adhesion of each explosive to a glass surface was quantified from amount of explosive adhering to the inside of a glass vial into which the explosive had been placed and then removed by vigorous tapping. In powdered form, most of the explosives - TNT, PETN, RDX, HMX, and TATP - exhibited similar spillage and adhesion to glass. However, PETN as sheet explosive and plasticized RDX (C-4), showed very little potential to contaminate surfaces, either by spillage or adhesion to glass

    Quantification and Aging of the Post-Blast Residue of TNT Landmines

    No full text
    Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dintrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually less than 1, whereas pre-blast residues started with ratios above 20. Because with time DNT decreased and ADNT increased, over a month the ratio decreased by a factor of 2. The rate of TNT degradation in soil observed in this study was much slower than that reported when initial concentrations of TNT were lower. Degradation rates yielded half-lives of 40 and 100 days for 2,4-DNT and TNT, respectively

    Improvised Explosive Devices: Pipe Bombs

    No full text
    The fragments from 56 pipe bombs were collected (average recovery 87%), counted, weighed, sorted, and photographed. The matrix examined included eight energetic fillers, two initiation systems, three types of pipe, and several degrees of fill. The matrix and results are summarized in Table 1. For identical devices, the overall fragmentation pattern was surprisingly reproducible. The fragmentation patterns are presented in photos, but they are also reduced to numerical evaluators. A particularly useful evaluator is the fragment weight distribution map (FWDM) which describes explosive power with a single variable -the slope. This value is independent of device size and percent recovery. We believe this database of 56 pipe bombs is the largest controlled study of these devices. This study demonstrates the possibility that, even in circumstances where chemical residue cannot be found, sufficient evidence is present in the pipe fragments to identify the nature of the energetic filler

    Self-Supported Biopolymeric Films Based on Onion Bulb (<i>Allium cepa</i> L.): Gamma-Radiation Effects in Sterilizing Doses

    No full text
    Sterilization is a fundamental step to eliminate microorganisms prior to the application of products, especially in the food and medical industries. γ-irradiation is one of the most recommended and effective methods used for sterilization, but its effect on the properties and performance of bio-based polymers is negligible. This work is aimed at evaluating the influence of γ-radiation at doses of 5, 10, 15, 25, 30, and 40 kGy on the morphology, properties, and performance of bioplastic produced from onion bulb (Allium cepa L.), using two hydrothermal synthesis procedures. These procedures differ in whether the product is washed or not after bioplastic synthesis, and are referred to as the unwashed hydrothermally treated pulp (HTP) and washed hydrothermally treated pulp (W-HTP). The morphological analysis indicated that the film surfaces became progressively rougher and more irregular for doses above 25 kGy, which increases their hydrophobicity, especially for the W-HTP samples. In addition, the FTIR and XRD results indicated that irradiation changed the structural and chemical groups of the samples. There was an increase in the crystallinity index and a predominance of the interaction of radiation with the hydroxyl groups—more susceptible to the oxidative effect—besides the cleavage of chemical bonds depending on the γ-radiation dose. The presence of soluble carbohydrates influenced the mechanical behavior of the samples, in which HTP is more ductile than W-HTP, but γ-radiation did not cause a change in mechanical properties proportionally to the dose. For W-HTP, films there was no mutagenicity or cytotoxicity—even after γ-irradiation at higher doses. In conclusion, the properties of onion-based films varied significantly with the γ-radiation dose. The films were also affected differently by radiation, depending on their chemical composition and the change induced by washing, which influences their use in food packaging or biomedical devices
    corecore