37 research outputs found

    Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia

    Get PDF
    Climate change is contributing to an increase in extreme weather events. This results in a higher river flooding risk, causing a series of environmental disturbances, including potential contamination of agricultural soil. In Serbia, the catastrophic floods of 2014 affected six river basins, including the Kolubara River Basin, as one of the larger sub-catchments of the large regional Sava River Basin, which is characterized by large areas under agricultural cultures, various geological substrates, and different types of industrial pollution. The main aim of this study was to establish the sources of potentially toxic elements in soil and flood sediments and the effect of the flood on their concentrations. Field sampling was performed immediately after water had receded from the flooded area in May 2014. In total, 36 soil samples and 28 flood sediment samples were collected. After acid digestion (HNO3), concentrations of the most frequent potentially toxic elements (PTE) in agricultural production (As, Cd, Cr, Cu, Ni, Pb, Zn) and Co which are closely related to the geological characteristics of river catchments, were analyzed. The origin, source, and interrelations of microelements, as well as BACKGROUND: values of the PTE of the river catchment, the pollution index (Pi), enrichment factor (Ef), and geological index (Igeo), were determined, using statistical methods such as Pearson correlations, principal component analysis (PCA), and multiple linear regression (MLRA). The content of the hot acid-extractable forms of the elements, PCA, and MLRA revealed a heavy geological influence on microelement content, especially on Ni, Cr, and Co, while an anthropogenic influence was observed for Cu, Zn, and Cd content. This mixed impact was primarily related to mines and their impact on As and Pb content. The pseudo-total concentrations of all the analyzed elements did not prove to be a danger in the catchment area, except for Cu in some samples, indicating point-source pollution, and Ni, whose pseudo-total content could be a limiting factor in agricultural production. For the Ef, the Ni content in 59% soil and 68% flood sediment samples is classified into influence classes. The similar pseudo-total contents of the elements studied in soil samples and flood sediment and their origin indicate that the long-term soil formation process is subject to periodic flooding in the Kolubara River Basin without any significant changes taking place. This implies that floods are not an endangering factor in terms of the contamination of soil by potentially toxic elements in the explored area

    WHO global research priorities for antimicrobial resistance in human health

    Get PDF
    The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR

    The Scoria Briquetting Process

    Full text link

    A Sanitary Drinking Fountain

    Full text link

    Effects of Lithium Ions on tPA-Induced Hemorrhagic Transformation under Stroke

    Full text link
    Thrombolytic therapy with the tissue plasminogen activator (tPA) is a therapeutic option for acute ischemic stroke. However, this approach is subject to several limitations, particularly the increased risk of hemorrhagic transformation (HT). Lithium salts show neuroprotective effects in stroke, but their effects on HT mechanisms are still unknown. In our study, we use the models of photothrombosis (PT)-induced brain ischemia and oxygen-glucose deprivation (OGD) to investigate the effect of Li+ on tPA-induced changes in brain and endothelial cell cultures. We found that tPA did not affect lesion volume or exacerbate neurological deficits but disrupted the blood–brain barrier. We demonstrate that poststroke treatment with Li+ improves neurological status and increases blood–brain barrier integrity after thrombolytic therapy. Under conditions of OGD, tPA treatment increased MMP-2/9 levels in endothelial cells, and preincubation with LiCl abolished this MMP activation. Moreover, we observed the effect of Li+ on glycolysis in tPA-treated endothelial cells, which we hypothesized to have an effect on MMP expression

    Neuroprotective Effects of Krypton Inhalation on Photothrombotic Ischemic Stroke

    Full text link
    This is the first in vivo study to investigate the neuroprotective effects of krypton on focal cerebral ischemia. The aim of the study was to analyze the effect of 2 h of inhalation of a krypton–oxygen mixture (Kr 70%/O2 30%) on the recovery of neurological functions and the degree of brain damage in rats after photoinduced ischemic stroke (PIS) and to investigate the possible mechanisms responsible for this neuroprotection. Experiments were performed on male Wistar rats weighing 250–300 g (n = 32). Animals were randomized into four groups. Two groups (n = 20) underwent photoinduced ischemic stroke, followed by 2 h of inhalation of krypton–oxygen mixture consisting of Kr 70%/O2 30% or a nitrogen–oxygen breathing mixture consisting of N2 70%/O2 30%, followed by neurological examinations on days 3 and 7. The other two groups (n = 12) received only gas mixtures of the same concentration and exposure duration as in those in the PIS groups, then Western blot analysis of the potential molecular mechanisms was performed. The results of the study show that treatment with the krypton–oxygen mixture consisting of Kr 70%/O2 30% improves the neurological status on day 7 of observation, reduces the lesion volume according to the MRI examination and the number of Iba-1- and caspase-3-positive cells in the damaged area, promotes the activation of neoangiogenesis (an increase in the von Willebrand factor), and reduces the penumbra area and the number of NeuN-positive cells in it on day 14 of observation. Inhalation of the krypton–oxygen mixture also significantly increases the levels of phosphorylated AKT kinase (protein kinase B) and glycogen synthase kinase 3b (pGSK3b) and promotes the expression of transcription factor Nrf2, which was accompanied by the lowered expression of transcription factor NFkB (p50). Thus, we showed pronounced neuroprotection induced by krypton inhalation after stroke and identified the signaling pathways that may be responsible for restoring neurological functions and reducing damage
    corecore