11 research outputs found
Central nervous system infection following vertical transmission of Coxsackievirus B4 in mice
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Coxsackie B viruses (CV-B) are important pathogens associated with several central nervous system (CNS) disorders. CV-B are mainly transmitted by the faecal-oral route, but there is also evidence for vertical transmission. The outcome of in utero CV-B infections on offspring's CNS is poorly explored. The aim of this study was to investigate vertical transmission of CV-B to the CNS. For this purpose, pregnant Swiss albino mice were intraperitoneally inoculated with CV-B4 E2 at gestational days 10G or 17G. Different CNS compartments were collected and analyzed for virus infection and histopathological changes. Using plaque assays, we demonstrated CV-B4 E2 vertical transmission to offspring's CNS. Viral RNA persisted in the CNS up to 60 days after birth, as evidenced by a sensitive semi-nested(sn) reverse transcripton(RT)-PCR method. This was despite infectious particles becoming undetectable at later time points. Persistence was associated with inflammatory lesions, lymphocyte infiltration and viral dsRNA detected by immunohistochemistry. Offspring born to dams mock- or virus-infected at day 17G were challenged by the same virus at day 21 after birth (-+ and ++ groups, respectively). Sn-RT-PCR and histology results compared between both ++ and -+ groups, show that in utero infection did not enhance CNS infection during challenge of the offspring with the same virus.This work was supported by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, (LR99ES27), Tunisia, and
Ministère de l’Education Nationale de la Recherche et de la Technologie, Université Lille 2 CHRU Lille (UPRES EA3610), France. Financial
support for S.J.R has come from the European Commission 7th Framework Programme PEVNET [FP7/2007-2013] under grant agreement
number 261441 and a Juvenile Diabetes Research Foundation (JDRF) Career Development Award (5-CDA-2014-221-A-N). Habib JMII was
supported by grants from Ministère de l’Enseignement Supérieur et de la Recherche Scientifique
Inhibition of coxsackievirus B4 by Lactobacillus plantarum
The enterovirus Coxsackievirus B4 (CV-B4) can infect different human tissues and provoke abnormal function or destruction of various organs and cells. Moreover, its infections have been linked to the onset of type 1 diabetes. Coxsackievirus B4 is classified as a “challenging virus”, due to the intense yet vain efforts to find effective prevention and therapeutic agents, especially within biological compounds. Lactobacillus plantarum is a lactic acid bacterium that is endowed with probiotic properties, and holds great potential for applications in medical and food industry sectors. Several compounds produced by this microorganism have been associated with various benefits including antimicrobial activity. In this work, we investigated the possible antiviral abilities of two Lb. plantarum strains and their derivatives against CV-B4. The different assays carried out (e.g. pre-incubation, competition and post-infection, using HEp-2 cells as human cell model) suggest that the tested microorganisms and their derivatives have an in vitro inhibiting activity against CV-B4. This is the first report showing the anti-CVB4 activity of Lb. plantarum strains and their derivatives
Coxsackievirus-B4E2 can infect monocytes and macrophages in vitro and in vivo
International audienceViral RNA (vRNA) is found in mice inoculated with coxsackievirus-B4E2 (CV-B4E2). The CV-B4E2 infection of murine spleen cells in vitro is enhanced with CV-B4E2-infected mouse serum. It has been investigated whether monocyte/macrophages were targets of CV-B4E2 in mice. vRNA has been detected in spleen and bone marrow of infected animals. The levels of vRNA were higher in CD14 + cells than in CD14- spleen cells and in F4/80- cells than in F4/80 + spleen cells. Meanwhile, CD14 + cells and F4/80- cells were more permissive to CV-B4E2 in vitro and the infection was enhanced when the virus was mixed with immune serum. While CV-B4E2 infected BMDM cultures (98% F4/80 +); however, the immune serum did not enhance the infection. In conclusion, CV-B4E2 infects monocytes (CD14 +, F4/80-) and macrophages (CD14 +, F4/80 +) in vivo and immune serum can enhance the in vitro infection of these cells arising out of the spleen
Regulation of the Methylation and Expression Levels of the BMPR2 Gene by SIN3a as a Novel Therapeutic Mechanism in Pulmonary Arterial Hypertension
International audienceBackground: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. Methods: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. Results: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. Conclusions: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH
In-utero coxsackievirus B4 infection of the mouse thymus
Type B coxsackievirus (CV-B) infections are involved frequently in the triggering of several autoimmune diseases such as myocarditis, dilated cardiomyopathy, pericarditis, pancreatitis, type 1 diabetes, encephalitis, thyroiditis or Sjo€gren’s syndrome. Serological and virological evidence suggests that maternal infections during pregnancy can play a role in the appearance of these diseases in offspring. The current study aims to explore the effect of an in-utero CV-B infection on the fetal thymus, the central site for programming immunological self-tolerance. In this perspective, female Swiss albino mice were inoculated intraperitoneally or orally with the diabetogenic CV-B4 E2 strain at gestational days 10 or 17. Offspring were killed at different post-inoculation times, and their thymuses were analysed for evidence of infection and alterations in thymic T cell subsets. In-utero CV-B infection of the thymus was demonstrated during the course of vertical transmission, as attested by viral RNA and infectious virus detection in most analysed samples. No histopathological changes were evident. Thymic T cells were not depleted, despite being positive for viral RNA. As evidenced by flow cytometry analysis, CV-B infection of the fetal thymus induced significant changes of thymic T cell populations, particularly with maternal inoculation at gestational day 10. Altogether, these findings suggest that CV-B infection of the fetal thymus may play an important role in the genesis of autoimmune diseases
Recommended from our members
Non-linear optical imaging of atherosclerotic plaques in the context of SIV and HIV infection prominently detects crystalline cholesterol esters
Chronic HIV infection may exacerbate atherosclerotic vascular disease, which at advanced stages presents as necrotic plaques rich in crystalline cholesterol. Such lesions can catastrophically rupture precipitating myocardial infarct and stroke, now important causes of mortality in those living with HIV. However, in this population little is known about plaque structure relative to crystalline content and its chemical composition. Here, we first interrogated plaque crystal structure and composition in atherosclerotic SIV-infected macaques using non-linear optical microscopy. By stimulated Raman scattering and second harmonic generation approaches both amorphous and crystalline plaque lipid was detected and the crystal spectral profile indicated a cholesterol ester (CE) dominated composition. Versus controls, SIV+ samples had a greater number of cholesterol crystals (CCs), with the difference, in part, accounted for by crystals of a smaller length. Given the ester finding, we profiled HIV+ plaques and also observed a CE crystalline spectral signature. We further profiled plaques from Ldlr-/- mice fed a high fat diet, and likewise, found CE-dominate crystals. Finally, macrophage exposure to CCs or AcLDL induced auto-fluorescent puncta that co-stained with the LC3B autophagy sensor. In aggregate, we show that atheromatous plaques from mice, macaques and humans, display necrotic cores dominated by esterified CCs, and that plaque macrophages may induce autophagic vesicle formation upon encountering CCs. These findings help inform our knowledge of plaque core lipid evolution and how the process may incite systemic inflammation