35 research outputs found

    Modeling of Equilibrium Shoreline of Headland Bay Beaches

    Get PDF
    Engineering tools for predicting a long-term reaction of beaches include equilibrium beach formulations. They are used to assess how human interference (protection works, breakwaters, ports etc.) has affected the shoreline reaction since they Specify the final orientation of a beach on a time scale of years. One of the equations for determining the Static Equilibrium Planform (SEP) of Headland Bay Beaches (HBBs) that can be found in the literature is the Parabolic Bay Shape Equation (PBSE). The placement of the down-coast control point (Po), which is the down drift limit from which the PBSE is applied, has a significant impact on the SEP. The direction of the mean wave energy flux at the diffraction point should be used to determine the Po point, according to the literature. The resulting planform shape does not suit the SEP for such circumstances, particularly when the headland structure is low-crested or submerged. However, this approach is no longer available when applied to a state of equilibrium embayed beaches in zones with a wide range of wave climate directionality and/or in cases where the point of diffraction is located far from the equilibrium shoreline, especially when the headland structure is low-crested or submerged. Employing 20 HBBs in Spain, this study explores the determination of the Po point of the SEP with such conditions. It also examines the significance of wave climate directional spreading on the SEP shape. Results indicate that the further the diffraction point is from the shoreline, the wider the segment of the beach that is impacted by the coastal barrier. Based on the analysis of the field cases, to find the Po point, a new formula has been developed. The model showed good results for several natural and artificial bay beaches with (R2= 0.8902 and a RMSE =2.098o) in the estimation of the angle that locates the down-coast control point of low-crested HBBs

    Induction of Hemeoxygenase-1 Reduces Renal Oxidative Stress and Inflammation in Diabetic Spontaneously Hypertensive Rats

    Get PDF
    The renoprotective mechanisms of hemeoxygenase-1 (HO-1) in diabetic nephropathy remain to be investigated. We hypothesize that HO-1 protects the kidney from diabetic insult via lowering renal oxidative stress and inflammation. We used control and diabetic SHR with or without HO-1 inducer cobalt protoporphyrin (CoPP) treatment for 6 weeks. Urinary albumin excretion levels were significantly elevated in diabetic SHR compared to control and CoPP significantly attenuated albumin excretion. Immuno-histochemical analysis revealed an elevation in TGF-β staining together with increased urinary collagen excretion in diabetic versus control SHR, both of which were reduced with CoPP treatment. Renal oxidative stress markers were greater in diabetic SHR and reduced with CoPP treatment. The increase in renal oxidative stress was associated with an elevation in renal inflammation in diabetic SHR. CoPP treatment also significantly attenuated the markers of renal inflammation in diabetic SHR. In vitro inhibition of HO with stannous mesoporphyrin (SnMP) increased glomerular NADPH oxidase activity and inflammation and blocked the anti-oxidant and anti-inflammatory effects of CoPP. These data suggest that the reduction of renal injury in diabetic SHR upon induction of HO-1 are associated with decreased renal oxidative stress and inflammation, implicating the role of HO-1 induction as a future treatment of diabetic nephropathy

    Correction: Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0134156.]

    Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats.

    No full text
    Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms.Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion.Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels.Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism

    Salvianolic Acid B Slows the Progression of Breast Cancer Cell Growth via Enhancement of Apoptosis and Reduction of Oxidative Stress, Inflammation, and Angiogenesis

    No full text
    Breast cancer is the current leading cause of cancer death in females worldwide. Although current chemotherapeutic drugs effectively reduce the progression of breast cancer, most of these drugs have many unwanted side effects. Salvianolic acid B (Sal-B) is a bioactive compound isolated from the root of Danshen Radix with potent antioxidant and anti-inflammatory properties. Since free radicals play a key role in the initiation and progression of tumor cells growth and enhance their metastatic potential, the current study was designed to investigate the antitumor activity of Sal-B and compare it with the antitumor activity of the traditional anticancer drug, cisplatin. In vitro, Sal-B decreased the human breast cancer adenocarcinoma (MCF-7) cells proliferation in a concentration and time dependent manner. In vivo and similar to cisplatin treatment, Sal-B significantly reduced tumor volume and increased the median survival when compared to tumor positive control mice group injected with Ehrlich solid carcinoma cell line (ESC). Sal-B decreased plasma level of malondialdehyde as a marker of oxidative stress and increased plasma level of reduced glutathione (GSH) as a marker of antioxidant defense when compared to control ESC injected mice. Either Sal-B or cisplatin treatment decreased tumor tissue levels of tumor necrosis factor (TNF-&alpha;), matrix metalloproteinase-8 (MMP-8), and Cyclin D1 in ESC treated mice. Contrary to cisplatin treatment, Sal-B did not decrease tumor tissue Ki-67 protein in ESC injected mice. Immunohistochemical analysis revealed that Sal-B or cisplatin treatment increased the expression of the apoptotic markers caspase-3 and P53. Although Sal-B or cisplatin significantly reduced the expression of the angiogenic factor vascular endothelial growth factor (VEGF) in ESC injected mice, only Sal-B reduced expression level of COX-2 in ESC injected mice. Our data suggest that Sal-B exhibits antitumor features against breast cancer cells possibly via enhancing apoptosis and reducing oxidative stress, inflammation, and angiogenesis

    Novel molecular triggers underlie valproate-induced liver injury and its alleviation by the omega-3 fatty acid DHA: role of inflammation and apoptosis

    Get PDF
    Background/Aim: Hepatic injury is a hallmark adverse reaction to Valproate (VPA), a common used drug in the management of numerous CNS disorders, including epilepsy. DHA has a myriad of health benefits, including renal- and hepato-protective effects. Unfortunately, however, the underpinnings of such liver-pertinent VPA- and DHA-actions remain largely undefined. Accordingly, this study attempted to unveil the cellular and molecular triggers whereby VPA evokes, while DHA abates, hepatotoxicity. Methods: We evaluated activity and/or expression of cellular markers of oxidative stress, inflammation, and apoptosis in rat liver, following treatment with VPA (500 mg/kg/day) with and without concurrent treatment with DHA (250 mg/kg/day) for two weeks. Results and conclusion: VPA promoted hepatic oxidative stress as evidenced by enhancing activity/expression of NADPH-oxidase and its subunits, a ROS-generator, and by accumulation of lipid-peroxides. Moreover, VPA enhanced hepatic phosphorylation/activation of mitogen-activated protein kinase (MAPK), and expression of cyclooxygenase-2(COX-2), as proinflammatory signals. Besides, VPA promoted hepatocellular apoptosis, as attested by enhanced expression of cleaved caspase-9 and increased number of TUNEL-positive hepatocytes. Lastly, VPA upregulated levels of hypoxia-inducible factor-1-alpha (HIF-1α), a multifaceted modulator of hepatocytic biology, and activity of its downstream antioxidant enzyme heme-oxygenase-1(HO-1). These changes were significantly blunted by co-administration of DHA. Our findings demonstrate that VPA activated NADPH-oxidase and HIF-1α to induce oxidative-stress and hypoxia as initiators of hepatic injury. These changes were further aggravated by up-regulation of inflammatory (MAPK and COX-2) and apoptotic cascades, but could be partly lessened by HO-1 activation. Concurrent administration of DHA mitigated all VPA-induced anomalies
    corecore