18 research outputs found

    Genetic ablation of soluble TNF does not affect lesion size and functional recovery after moderate spinal cord injury in mice

    Get PDF
    Traumatic spinal cord injury (SCI) is followed by an instant increase in expression of the microglial-derived proinflammatory cytokine tumor necrosis factor (TNF) within the lesioned cord. TNF exists both as membrane-anchored TNF (mTNF) and as cleaved soluble TNF (solTNF). We previously demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing mTNF, but no solTNF (mTNFΔ/Δ), to study the effect of genetic ablation of solTNF on SCI. We demonstrate that TNF levels were significantly decreased within the lesioned spinal cord 3 days after SCI in mTNFΔ/Δ mice compared to littermates. This decrease did, however, not translate into significant changes in other pro- and anti-inflammatory cytokines (IL-10, IL-1β, IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5), despite a tendency towards increased IL-10 and decreased IL-1β, TNFR1, and TNFR2 levels in mTNFΔ/Δ mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45, and MHCII), lesion size, and functional outcome after moderate SCI were comparable between genotypes. Collectively, our data demonstrate that genetic ablation of solTNF does not significantly modulate postlesion outcome after SCI

    Selectivity, efficacy and toxicity studies of UCCB01-144, a dimeric neuroprotective PSD-95 inhibitor

    Get PDF
    Inhibition of postsynaptic density protein-95 (PSD-95) decouples N-methyl-d-aspartate (NMDA) receptor downstream signaling and results in neuroprotection after focal cerebral ischemia. We have previously developed UCCB01-144, a dimeric PSD-95 inhibitor, which binds PSD-95 with high affinity and is neuroprotective in experimental stroke. Here, we investigate the selectivity, efficacy and toxicity of UCCB01-144 and compare with the monomeric drug candidate Tat-NR2B9c. Fluorescence polarization using purified proteins and pull-downs of mouse brain lysates showed that UCCB01-144 potently binds all four PSD-95-like membrane-associated guanylate kinases (MAGUKs). In addition, UCCB01-144 affected NMDA receptor signaling pathways in ischemic brain tissue. UCCB01-144 reduced infarct size in young and aged male mice at various doses when administered 30 min after permanent middle cerebral artery occlusion, but UCCB01-144 was not effective in young male mice when administered 1 h post-ischemia or in female mice. Furthermore, UCCB01-144 was neuroprotective in a transient stroke model in rats, and in contrast to Tat-NR2B9c, high dose of UCCB01-144 did not lead to significant changes in mean arterial blood pressure or heart rate. Overall, UCCB01-144 is a potent MAGUK inhibitor that reduces neurotoxic PSD-95-mediated signaling and improves neuronal survival following focal brain ischemia in rodents under various conditions and without causing cardiovascular side effects, which encourages further studies towards clinical stroke trials

    Genetic Ablation of Soluble TNF Does Not Affect Lesion Size and Functional Recovery after Moderate Spinal Cord Injury in Mice

    Get PDF
    Traumatic spinal cord injury (SCI) is followed by an instant increase in expression of the microglial-derived proinflammatory cytokine tumor necrosis factor (TNF) within the lesioned cord. TNF exists both as membrane-anchored TNF (mTNF) and as cleaved soluble TNF (solTNF). We previously demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing mTNF, but no solTNF (mTNF Δ/Δ ), to study the effect of genetic ablation of solTNF on SCI. We demonstrate that TNF levels were significantly decreased within the lesioned spinal cord 3 days after SCI in mTNF Δ/Δ mice compared to littermates. This decrease did, however, not translate into significant changes in other pro-and anti-inflammatory cytokines (IL-10, IL-1 , IL-6, IL-5, IL-2, CXCL1, CCL2, or CCL5), despite a tendency towards increased IL-10 and decreased IL-1 , TNFR1, and TNFR2 levels in mTNF Δ/Δ mice. In addition, microglial and leukocyte infiltration, activation state (Iba1, CD11b, CD11c, CD45, and MHCII), lesion size, and functional outcome after moderate SCI were comparable between genotypes. Collectively, our data demonstrate that genetic ablation of solTNF does not significantly modulate postlesion outcome after SCI

    Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans

    No full text
    To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability

    Apex Resection in Zebrafish (Danio rerio) as a Model of Heart Regeneration: A Video-Assisted Guide

    No full text
    Ischemic heart disease is one of the leading causes of deaths worldwide. A major hindrance to resolving this challenge lies in the mammalian hearts inability to regenerate after injury. In contrast, zebrafish retain a regenerative capacity of the heart throughout their lifetimes. Apex resection (AR) is a popular zebrafish model for studying heart regeneration, and entails resecting 10–20% of the heart in the apex region, whereafter the regeneration process is monitored until the heart is fully regenerated within 60 days. Despite this popularity, video tutorials describing this technique in detail are lacking. In this paper we visualize and describe the entire AR procedure including anaesthesia, surgery, and recovery. In addition, we show that the concentration and duration of anaesthesia are important parameters to consider, to balance sufficient levels of sedation and minimizing mortality. Moreover, we provide examples of how zebrafish heart regeneration can be assessed both in 2D (immunohistochemistry of heart sections) and 3D (analyses of whole, tissue cleared hearts using multiphoton imaging). In summary, this paper aims to aid beginners in establishing and conducting the AR model in their laboratory, but also to spur further interest in improving the model and its evaluation

    The loss-of-function disease-mutation G301R in the Na+/K+-ATPase α2 isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice

    Get PDF
    Abstract Background The Na+/K+-ATPases are transmembrane ion pumps important for maintenance of ion gradients across the plasma membrane that serve to support multiple cellular functions, such as membrane potentials, regulation of cellular volume and pH, and co-transport of signaling transmitters in all animal cells. The α2Na+/K+-ATPase subunit isoform is predominantly expressed in astrocytes, which us the sharp Na+-gradient maintained by the sodium pump necessary for astroglial metabolism. Prolonged ischemia induces an elevation of [Na+]i, decreased ATP levels and intracellular pH owing to anaerobic metabolism and lactate accumulation. During ischemia, Na+/K+-ATPase-related functions will naturally increase the energy demand of the Na+/K+-ATPase ion pump. However, the role of the α2Na+/K+-ATPase in contusion injury to the spinal cord remains unknown. We used mice heterozygous mice for the loss-of-function disease-mutation G301R in the Atp1a2 gene (α 2 +/G301R ) to study the effect of reduced α2Na+/K+-ATPase expression in a moderate contusion spinal cord injury (SCI) model. Results We found that α 2 +/G301R mice display significantly improved functional recovery and decreased lesion volume compared to littermate controls (α 2 +/+ ) 7 days after SCI. The protein level of the α1 isoform was significantly increased, in contrast to the α3 isoform that significantly decreased 3 days after SCI in both α 2 +/G301R and α 2 +/+ mice. The level of the α2 isoform was significantly decreased in α 2 +/G301R mice both under naïve conditions and 3 days after SCI compared to α 2 +/+ mice. We found no differences in astroglial aquaporin 4 levels and no changes in the expression of chemokines (CCL2, CCL5 and CXCL1) and cytokines (TNF, IL-6, IL-1β, IL-10 and IL-5) between genotypes, just as no apparent differences were observed in location and activation of CD45 and F4/80 positive microglia and infiltrating leukocytes. Conclusion Our proof of concept study demonstrates that reduced expression of the α2 isoform in the spinal cord is protective following SCI. Importantly, the BMS and lesion volume were assessed at 7 days after SCI, and longer time points after SCI were not evaluated. However, the α2 isoform is a potential possible target of therapeutic strategies for the treatment of SCI

    The Inflammatory Response after Moderate Contusion Spinal Cord Injury: A Time Study

    No full text
    Spinal cord injury (SCI) initiates detrimental cellular and molecular events that lead to acute and delayed neuroinflammation. Understanding the role of the inflammatory response in SCI requires insight into the temporal and cellular synthesis of inflammatory mediators. We subjected C57BL/6J mice to SCI and investigated inflammatory reactions. We examined activation, recruitment, and polarization of microglia and infiltrating immune cells, focusing specifically on tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2. In the acute phase, TNF expression increased in glial cells and neuron-like cells, followed by infiltrating immune cells. TNFR1 and TNFR2 levels increased in the delayed phase and were found preferentially on neurons and glial cells, respectively. The acute phase was dominated by the infiltration of granulocytes and macrophages. Microglial/macrophage expression of Arg1 increased from 1–7 days after SCI, followed by an increase in Itgam, Cx3cr1, and P2ry12, which remained elevated throughout the study. By 21 and 28 days after SCI, the lesion core was populated by galectin-3+, CD68+, and CD11b+ microglia/macrophages, surrounded by a glial scar consisting of GFAP+ astrocytes. Findings were verified in postmortem tissue from individuals with SCI. Our findings support the consensus that future neuroprotective immunotherapies should aim to selectively neutralize detrimental immune signaling while sustaining pro-regenerative processes
    corecore