507 research outputs found

    Glass as a Waste Form for the Immobilization of Plutonium

    Get PDF
    Several alternatives for disposal of surplus plutonium are being considered. One method is incorporating Pu into glass and in this paper we discuss the development and corrosion behavior of an alkali-tin-silicate glass and update results in testing Pu doped Defense Waste Processing Facility (DWPF) reference glasses. The alkali-tin-silicate glass was engineered to accommodate a high Pu loading and to be durable under conditions likely to accelerate glass reaction. The glass dissolves about 7 wt% Pu together with the neutron absorber Gd, and under test conditions expected to accelerate the glass reaction with water, is resistant to corrosion. The Pu and the Gd are released from the glass at nearly the same rate in static corrosion tests in water, and are not segregated into surface alteration phases when the glass is reacted in water vapor. Similar results for the behavior of Pu and Gd are found for the DWPF reference glasses, although the long-term rate of reaction for the reference glasses is more rapid than for the alkali-tin-silicate glass

    The IUCF Cooler Project

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Laboratory Development

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Laboratory Development

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    The IUCF Cooler Project

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Understanding hadronic gamma-ray emission from supernova remnants

    Full text link
    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added. Some typos correcte
    corecore