12,102 research outputs found
Development and evaluation of silicon drift chambers
Imperial Users onl
Exploratory studies of contact angle hysteresis, wetting of solidified rare gases and surface properties of mercury Final report
Contact angle hysteresis, wetting of solidified rare gases, and surface properties of mercur
The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc?
The relation between the stellar mass and size of a galaxy's structural
subcomponents, such as discs and spheroids, is a powerful way to understand the
processes involved in their formation. Using very large catalogues of
photometric bulge+disc structural decompositions and stellar masses from the
Sloan Digital Sky Survey Data Release Seven, we carefully define two large
subsamples of spheroids in a quantitative manner such that both samples share
similar characteristics with one important exception: the 'bulges' are embedded
in a disc and the 'pure spheroids' are galaxies with a single structural
component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243
respectively. Above a stellar mass of ~ M, the mass-size
relations of both subsamples are parallel to one another and are close to lines
of constant surface mass density. However, the relations are offset by a factor
of 1.4, which may be explained by the dominance of dissipation in their
formation processes. Whereas the size-mass relation of bulges in discs is
consistent with gas-rich mergers, pure spheroids appear to have been formed via
a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure
Emittance Growth Due To Tune Fluctuations and the Beam-beam interaction
Analytical formulae and computer simulation results are presented for the emittance growth caused by small asymmetries of the beam-beam force, caused by small fluctuations of the phase, small offsets between the beams and fluctuations in the size of the opposite beam
Transverse Beam Dynamics with Noise
The linear transverse beam dynamics perturbed by magnet non-linearities and noise is analysed, using averaging techniques
Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust
This is the second paper (the first was astro-ph/9704267) of a series
analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we
present a quantitative model of GCR origin and acceleration based on the
acceleration of a mixture of interstellar and/or circumstellar gas and dust by
supernova remnant blast waves. We present results from a nonlinear shock model
which includes (i) the direct acceleration of interstellar gas-phase ions, (ii)
a simplified model for the direct acceleration of weakly charged dust grains to
energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional
energy losses of the grains colliding with the gas, (iv) sputtering of ions of
refractory elements from the accelerated grains and (v) the further shock
acceleration of the sputtered ions to cosmic ray energies. The calculated GCR
composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript
figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso
Concordant cues in faces and voices: testing the backup signal hypothesis
Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis
- …