680 research outputs found

    Role of Hyperon Negative Energy Sea in Nuclear Matter

    Get PDF
    We have examined the contribution of the filled negative energy sea of hyperons to the energy/particle in nuclear matter at the one and two loop levels. While this has the potential to be significant, we find a strong cancellation between the one and two loop contributions for our chosen parameters so that hyperon effects can be justifiably neglected.Comment: 12 pages, latex, 1 simple figure attached at end (regular postscript

    Radiation Problem in Transplanckian Scattering

    Full text link
    We investigate hard radiation emission in small-angle transplanckian scattering. We show how to reduce this problem to a quantum field theory computation in a classical background (gravitational shock wave). In momentum space, the formalism is similar to the flat-space light cone perturbation theory, with shock wave crossing vertices added. In the impact parameter representation, the radiating particle splits into a multi-particle virtual state, whose wavefunction is then multiplied by individual eikonal factors. As a phenomenological application, we study QCD radiation in transplanckian collisions of TeV-scale gravity models. We derive the distribution of initial state radiation gluons, and find a suppression at large transverse momenta with respect to the standard QCD result. This is due to rescattering events, in which the quark and the emitted gluon scatter coherently. Interestingly, the suppression factor depends on the number of extra dimensions and provides a new experimental handle to measure this number. We evaluate the leading-log corrections to partonic cross-sections due to the initial state radiation, and prove that they can be absorbed into the hadronic PDF. The factorization scale should then be chosen in agreement with an earlier proposal of Emparan, Masip, and Rattazzi. In the future, our methods can be applied to the gravitational radiation in transplanckian scattering, where they can go beyond the existing approaches limited to the soft radiation case.Comment: 41 pp, v2: minor changes and added refs, conforms with published versio

    Single-Inclusive Jet Production in Polarized pp Collisions at O(alpha_s^3)

    Full text link
    We present a next-to-leading order QCD calculation for single-inclusive high-p_T jet production in longitudinally polarized pp collisions within the ``small-cone'' approximation. The fully analytical expressions obtained for the underlying partonic hard-scattering cross sections greatly facilitate the analysis of upcoming BNL-RHIC data on the double-spin asymmetry A_{LL}^{jet} for this process in terms of the unknown polarization of gluons in the nucleon. We simultaneously rederive the corresponding QCD corrections to unpolarized scattering and confirm the results existing in the literature. We also numerically compare to results obtained with Monte-Carlo methods and assess the range of validity of the ``small-cone'' approximation for the kinematics relevant at BNL-RHIC.Comment: 23 pages, 8 eps-figure

    Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons

    Full text link
    The role of CPTCPT invariance and consequences for bipartite entanglement of neutral (K) mesons are discussed. A relaxation of CPTCPT leads to a modification of the entanglement which is known as the ω\omega effect. The relaxation of assumptions required to prove the CPTCPT theorem are examined within the context of models of space-time foam. It is shown that the evasion of the EPR type entanglement implied by CPTCPT (which is connected with spin statistics) is rather elusive. Relaxation of locality (through non-commutative geometry) or the introduction of decoherence by themselves do not lead to a destruction of the entanglement. So far we find only one model which is based on non-critical strings and D-particle capture and recoil that leads to a stochastic contribution to the space-time metric and consequent change in the neutral meson bipartite entanglement. The lack of an omega effect is demonstrated for a class of models based on thermal like baths which are generally considered as generic models of decoherence

    Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification

    Get PDF
    It is shown how to use as horizontal symmetry the dicyclic group Q6SU(2)Q_6 \subset SU(2) in a supersymmetric unification SU(5)SU(5)SU(2)SU(5)\otimes SU(5)\otimes SU(2) where one SU(5)SU(5) acts on the first and second families, in a horizontal doublet, and the other acts on the third. This can lead to acceptable quark masses and mixings, with an economic choice of matter supermultiplets, and charged lepton masses can be accommodated.Comment: 10 pages, LaTe

    Evolving Lorentzian Wormholes

    Full text link
    Evolving Lorentzian wormholes with the required matter satisfying the Energy conditions are discussed. Several different scale factors are used and the corresponding consequences derived. The effect of extra, decaying (in time) compact dimensions present in the wormhole metric is also explored and certain interesting conclusions are derived for the cases of exponential and Kaluza--Klein inflation.Comment: 10 pages( RevTex, Twocolumn format), Two figures available on request from the first author. transmission errors corrected

    Production and dilution of gravitinos by modulus decay

    Full text link
    We study the cosmological consequences of generic scalar fields like moduli which decay only through gravitationally suppressed interactions. We consider a new production mechanism of gravitinos from moduli decay, which might be more effective than previously known mechanisms, and calculate the final gravitino-to-entropy ratio to compare with the constraints imposed by successful big bang nucleosynthesis (BBN) etc., taking possible hadronic decays of gravitinos into account. We find the modulus mass smaller than 104\sim 10^4 TeV is excluded. On the other hand, inflation models with high reheating temperatures TR,inf1016T_{R,\rm inf} \sim 10^{16} GeV can be compatible with BBN thanks to the late-time entropy production from the moduli decay if model parameters are appropriately chosen.Comment: 18 pages, 4 figures, to appear in Phys. Rev.

    Next-to-leading order QCD corrections to A_TT for prompt photon production

    Full text link
    We present a next-to-leading order QCD calculation of the cross section for isolated large-p_T prompt photon production in collisions of transversely polarized protons. We devise a simple method of dealing with the phase space integrals in dimensional regularization in the presence of the cos(2 phi) azimuthal-angular dependence occurring for transverse polarization. Our results allow to calculate the double-spin asymmetry A_TT for this process at next-to-leading order accuracy, which may be used at BNL-RHIC to measure the transversity parton distributions of the proton.Comment: 19 pages, LaTeX, 2 figures as eps file

    Z boson pair production at LHC in a stabilized Randall-Sundrum scenario

    Get PDF
    We study the Z boson pair production at LHC in the Randall-Sundrum scenario with the Goldberger-Wise stabilization mechanism. It is shown that comprehensive account of the Kaluza-Klein graviton and radion effects is crucial to probe the model: The KK graviton effects enhance the cross section of ggZZg g \to Z Z on the whole so that the resonance peak of the radion becomes easy to detect, whereas the RS effects on the qqˉZZq\bar{q} \to Z Z process are rather insignificant. The pTp_T and invariant-mass distributions are presented to study the dependence of the RS model parameters. The production of longitudinally polarized Z bosons, to which the SM contributions are suppressed, is mainly due to KK gravitons and the radion, providing one of the most robust methods to signal the RS effects. The 1σ1 \sigma sensitivity bounds on (Λπ,mϕ)(\Lambda_\pi, m_\phi) with k/MPl=0.1k/M_{\rm Pl} =0.1 are also obtained such that the effective weak scale Λπ\Lambda_\pi of order 5 TeV can be experimentally probed.Comment: 28 pages, LaTex file, 18 eps figure

    Towards a global analysis of polarized parton distributions

    Get PDF
    We present a technique for implementing in a fast way, and without any approximations, higher-order calculations of partonic cross sections into global analyses of parton distribution functions. The approach, which is set up in Mellin-moment space, is particularly suited for analyses of future data from polarized proton-proton collisions, but not limited to this case. The usefulness and practicability of this method is demonstrated for the semi-inclusive production of hadrons in deep-inelastic scattering and the transverse momentum distribution of ``prompt'' photons in pp collisions, and a case study for a future global analysis of polarized parton densities is presented.Comment: 20 pages, LaTeX, 6 eps figures, final version to appear in PRD (minor changes
    corecore