749 research outputs found
Structure formation in the Lemaitre-Tolman model
Structure formation within the Lemaitre-Tolman model is investigated in a
general manner. We seek models such that the initial density perturbation
within a homogeneous background has a smaller mass than the structure into
which it will develop, and the perturbation then accretes more mass during
evolution. This is a generalisation of the approach taken by Bonnor in 1956. It
is proved that any two spherically symmetric density profiles specified on any
two constant time slices can be joined by a Lemaitre-Tolman evolution, and
exact implicit formulae for the arbitrary functions that determine the
resulting L-T model are obtained. Examples of the process are investigated
numerically.Comment: LaTeX 2e plus 14 .eps & .ps figure files. 33 pages including figures.
Minor revisions of text and data make it more precise and consistent.
Currently scheduled for Phys Rev D vol 64, December 15 issu
Light spin-1/2 or spin-0 Dark Matter particles
We recall and precise how light spin-0 particles could be acceptable Dark
Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate
the (rather large) annihilation cross sections required, and show how they may
be induced by a new light neutral spin-1 boson U. If this one is vectorially
coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation
cross section into e+e- automatically includes a v_dm^2 suppression factor at
threshold, as desirable to avoid an excessive production of gamma rays from
residual Dark Matter annihilations. We also relate Dark Matter annihilations
with production cross sections in e+e- scatterings. Annihilation cross sections
of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same
expressions. Just as for spin-0, light spin-1/2 Dark Matter particles
annihilating into e+e- could be responsible for the bright 511 keV gamma ray
line observed by INTEGRAL from the galactic bulge.Comment: 10 page
Cosmological background solutions and cosmological backreactions
The cosmological backreaction proposal, which attempts to account for
observations without a primary dark energy source in the stress-energy tensor,
has been developed and discussed by means of different approaches. Here, we
focus on the concept of cosmological background solutions in order to develop a
framework to study different backreaction proposals.Comment: 14 pages, 5 figures; major changes, replaced to match the version
published in General Relativity and Gravitatio
Phenomenological description of quantum gravity inspired modified classical electrodynamics
We discuss a large class of phenomenological models incorporating quantum
gravity motivated corrections to electrodynamics. The framework is that of
electrodynamics in a birefringent and dispersive medium with non-local
constitutive relations, which are considered up to second order in the inverse
of the energy characterizing the quantum gravity scale. The energy-momentum
tensor, Green functions and frequency dependent refraction indices are
obtained, leading to departures from standard physics. The effective character
of the theory is also emphasized by introducing a frequency cutoff. The
analysis of its effects upon the standard notion of causality is performed,
showing that in the radiation regime the expected corrections get further
suppressed by highly oscillating terms, thus forbiding causality violations to
show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and
Gra
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio
Understanding person acquisition using an interactive activation and competition network
Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/
Corrections to flat-space particle dynamics arising from space granularity
The construction of effective Hamiltonians describing corrections to flat
space particle dynamics arising from the granularity of space at very short
distances is discussed in the framework of an heuristic approach to the
semiclassical limit of loop quantum gravity. After some general motivation of
the subject, a brief non-specialist introduction to the basic tools employed in
the loop approach is presented. The heuristical semiclassical limit is
subsequently defined and the application to the case of photons and spin 1/2
fermions is described. The resulting modified Maxwell and Dirac Hamiltonians,
leading in particular to Planck scale corrections in the energy-momentum
relations, are presented. Alternative interpretations of the results and their
limitations, together with other approaches are briefly discussed along the
text. Three topics related to the above methods are reviewed: (1) The
determination of bounds to the Lorentz violating parameters in the fermionic
sector, obtained from clock comparison experiments.(2) The calculation of
radiative corrections in preferred frames associated to space granularity in
the framework of a Yukawa model for the interactions and (3) The calculation of
synchrotron radiation in the framework of the Myers-Pospelov effective theories
describing Lorentz invariance violations, as well as a generalized approach to
radiation in Planck scale modified electrodynamics. The above exploratory
results show that quantum gravity phenomenology provides observational guidance
in the construction of quantum gravity theories and opens up the possibility of
probing Planck scale physics.Comment: 49 pages, 6 figures and 4 tables. Extended version of the talk given
at the 339-th WE-Heraeus-Seminar: Special Relativity, will it survive the
next 100 years?, Potsdam, february 200
Lorentz breaking Effective Field Theory and observational tests
Analogue models of gravity have provided an experimentally realizable test
field for our ideas on quantum field theory in curved spacetimes but they have
also inspired the investigation of possible departures from exact Lorentz
invariance at microscopic scales. In this role they have joined, and sometime
anticipated, several quantum gravity models characterized by Lorentz breaking
phenomenology. A crucial difference between these speculations and other ones
associated to quantum gravity scenarios, is the possibility to carry out
observational and experimental tests which have nowadays led to a broad range
of constraints on departures from Lorentz invariance. We shall review here the
effective field theory approach to Lorentz breaking in the matter sector,
present the constraints provided by the available observations and finally
discuss the implications of the persisting uncertainty on the composition of
the ultra high energy cosmic rays for the constraints on the higher order,
analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on
"Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references
adde
Lemaitre-Tolman-Bondi model and accelerating expansion
I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi
(LTB) metric, which provides an exact toy model for an inhomogeneous universe.
Since we observe light rays from the past light cone, not the expansion of the
universe, spatial variation in matter density and Hubble rate can have the same
effect on redshift as acceleration in a perfectly homogeneous universe. As a
consequence, a simple spatial variation in the Hubble rate can account for the
distant supernova data in a dust universe without any dark energy. I also
review various attempts towards a semirealistic description of the universe
based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17
pages, 3 figure
Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae
It is now a known fact that if we happen to be living in the middle of a
large underdense region, then we will observe an "apparent acceleration", even
when any form of dark energy is absent. In this paper, we present a "Minimal
Void" scenario, i.e. a "void" with minimal underdensity contrast (of about
-0.4) and radius (~ 200-250 Mpc/h) that can, not only explain the supernovae
data, but also be consistent with the 3-yr WMAP data. We also discuss
consistency of our model with various other measurements such as Big Bang
Nucleosynthesis, Baryon Acoustic Oscillations and local measurements of the
Hubble parameter, and also point out possible observable signatures.Comment: Minor numerical errors and typos corrected, references adde
- …
