5 research outputs found

    Direct Detection of Dark Matter in the MSSM with Non-Universal Higgs Masses

    Full text link
    We calculate dark matter scattering rates in the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, we find that the elastic scattering cross sections may be up to two orders of magnitude larger than values in the CMSSM for similar LSP masses. We find the following preferred ranges for the spin-independent cross section: 10^{-6} pb \ga \sigma_{SI} \ga 10^{-10} pb, and for the spin-dependent cross section: 10^{-3} pb \ga \sigma_{SD}, with the lower bound on \sigma_{SI} dependent on using the putative constraint from the muon anomalous magnetic moment. We stress the importance of incorporating accelerator and dark matter constraints in restricting the NUHM parameter space, and also of requiring that no undesirable vacuum appear below the GUT scale. In particular, values of the spin-independent cross section another order of magnitude larger would appear to be allowed, for small \tan \beta, if the GUT vacuum stability requirement were relaxed, and much lower cross-section values would be permitted if the muon anomalous magnetic moment constraint were dropped.Comment: 30 pages LaTeX, 40 eps figure

    Update on the Direct Detection of Dark Matter in MSSM Models with Non-Universal Higgs Masses

    Full text link
    We discuss the possibilities for the direct detection of neutralino dark matter via elastic scattering in variants of the minimal supersymmetric extension of the Standard Model (MSSM) with non-universal supersymmetry-breaking contributions to the Higgs masses, which may be either equal (NUHM1) or independent (NUHM2). We compare the ranges found in the NUHM1 and NUHM2 with that found in the MSSM with universal supersymmetry-breaking contributions to all scalar masses, the CMSSM. We find that both the NUHM1 and NUHM2 offer the possibility of larger spin-independent dark matter scattering cross sections than in the CMSSM for larger neutralino masses, since they allow the density of heavier neutralinos with large Higgsino components to fall within the allowed range by astrophysics. The NUHM1 and NUHM2 also offer more possibilities than the CMSSM for small cross sections for lower neutralino masses, since they may be suppressed by scalar and pseudoscalar Higgs masses that are larger than in the CMSSM.Comment: 35 pages, 14 figures, submitted to New Journal of Physics focus issue "Dark Matter and Particle Physics

    Constraining Supersymmetry

    Get PDF
    We review constraints on the minimal supersymmetric extension of the Standard Model (MSSM) coming from direct searches at accelerators such as LEP, indirect measurements such as b -> s gamma decay and the anomalous magnetic moment of the muon. The recently corrected sign of pole light-by-light scattering contributions to the latter is taken into account. We combine these constraints with those due to the cosmological density of stable supersymmetric relic particles. The possible indications on the supersymmetric mass scale provided by fine-tuning arguments are reviewed critically. We discuss briefly the prospects for future accelerator searches for supersymmetry.Comment: 21 LaTeX pages, 9 eps figures, Invited Contribution to the New Journal of Physics Focus Issue on Supersymmetr

    Direct versus indirect detection in mSUGRA with self-consistent halo models

    Full text link
    We perform a detailed analysis of the detection prospects of neutralino dark matter in the mSUGRA framework. We focus on models with a thermal relic density, estimated with high accuracy using the DarkSUSY package, in the range favored by current precision cosmological measurements. Direct and indirect detection rates are computed implementing two models for the dark matter halo, tracing opposite regimes for the phase of baryon infall, with fully consistent density profiles and velocity distribution functions. This has allowed, for the first time, a fully consistent comparison between direct and indirect detection prospects. We discuss all relevant regimes in the mSUGRA parameter space, underlining relevant effects, and providing the basis for extending the discussion to alternative frameworks. In general, we find that direct detection and searches for antideuterons in the cosmic rays seems to be the most promising ways to search for neutralinos in these scenarios.Comment: 26 pages, 9 figure

    Desperately Seeking Supersymmetry [SUSY]

    Full text link
    In this article we try to clarify why supersymmetry [SUSY] and supersymmetric grand unified theories [SUSY GUTs] are the new standard model of particle physics, i.e. the standard by which all other theories and experiments are measured.Comment: 69 pages, 15 figures, new references adde
    corecore