27,682 research outputs found

    Hubble's law and faster than light expansion speeds

    Full text link
    Naively applying Hubble's law to a sufficiently distant object gives a receding velocity larger than the speed of light. By discussing a very similar situation in special relativity, we argue that Hubble's law is meaningful only for nearby objects with non-relativistic receding speeds. To support this claim, we note that in a curved spacetime manifold it is not possible to directly compare tangent vectors at different points, and thus there is no natural definition of relative velocity between two spatially separated objects in cosmology. We clarify the geometrical meaning of the Hubble's receding speed v by showing that in a Friedmann-Robertson-Walker spacetime if the four-velocity vector of a comoving object is parallel-transported along the straight line in flat comoving coordinates to the position of a second comoving object, then v/c actually becomes the rapidity of the local Lorentz transformation, which maps the fixed four-velocity vector to the transported one.Comment: 5 pages, 2 figures, to appear in Am. J. Phy

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde

    Cell-free prediction of protein expression costs for growing cells

    Get PDF
    Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway

    A Gauge-invariant Analysis of Magnetic Fields in General Relativistic Cosmology

    Get PDF
    We provide a fully general-relativistic treatment of cosmological perturbations in a universe permeated by a large-scale primordial magnetic field, using the Ellis-Bruni gauge-invariant formalism. The exact non-linear equations for general relativistic magnetohydrodynamic evolution are derived. A number of applications are made: the behaviour of small perturbations to Friedmann universes are studied; a comparison is made with earlier Newtonian treatments of cosmological perturbations and some effects of inflationary expansion are examined.Comment: 31 pages, Latex, Submitted to Classical and Quantum Gravit

    Lensing and caustic effects on cosmological distances

    Get PDF
    We consider the changes which occur in cosmological distances due to the combined effects of some null geodesics passing through low-density regions while others pass through lensing-induced caustics. This combination of effects increases observed areas corresponding to a given solid angle even when averaged over large angular scales, through the additive effect of increases on all scales, but particularly on micro-angular scales; however angular sizes will not be significantly effected on large angular scales (when caustics occur, area distances and angular-diameter distances no longer coincide). We compare our results with other works on lensing, which claim there is no such effect, and explain why the effect will indeed occur in the (realistic) situation where caustics due to lensing are significant. Whether or not the effect is significant for number counts depends on the associated angular scales and on the distribution of inhomogeneities in the universe. It could also possibly affect the spectrum of CBR anisotropies on small angular scales, indeed caustics can induce a non-Gaussian signature into the CMB at small scales and lead to stronger mixing of anisotropies than occurs in weak lensing.Comment: 28 pages, 6 ps figures, eps

    Geodesic Deviation Equation in Bianchi Cosmologies

    Full text link
    We present the Geodesic Deviation Equation (GDE) for the Friedmann-Robertson-Walker(FRW) universe and we compare it with the equation for Bianchi type I model. We justify consider this cosmological model due to the recent importance the Bianchi Models have as alternative models in cosmology. The main property of these models, solutions of Einstein Field Equations (EFE) is that they are homogeneous as the FRW model but they are not isotropic. We can see this because they have a non-null Weyl tensor in the GDE.Comment: Submitted to Journal of Physics: Conference Series (JPCS), ERE200

    General relativistic analysis of peculiar velocities

    Get PDF
    We give a careful general relativistic and (1+3)-covariant analysis of cosmological peculiar velocities induced by matter density perturbations in the presence of a cosmological constant. In our quasi-Newtonian approach, constraint equations arise to maintain zero shear of the non-comoving fundamental worldlines which define a Newtonian-like frame, and these lead to the (1+3)-covariant dynamical equations, including a generalized Poisson-type equation. We investigate the relation between peculiar velocity and peculiar acceleration, finding the conditions under which they are aligned. In this case we find (1+3)-covariant relativistic generalizations of well-known Newtonian results.Comment: 8 pages, LaTeX2e (iopart); minor changes, matches version accepted for publication by Classical and Quantum Gravit

    Curvature blow up in Bianchi VIII and IX vacuum spacetimes

    Get PDF
    The maximal globally hyperbolic development of non-Taub-NUT Bianchi IX vacuum initial data and of non-NUT Bianchi VIII vacuum initial data is C2 inextendible. Furthermore, a curvature invariant is unbounded in the incomplete directions of inextendible causal geodesics.Comment: 20 pages, no figures. Submitted to Classical and Quantum Gravit
    corecore