29,759 research outputs found

    Probing the Structure of the Pomeron

    Full text link
    We suggest that the pseudo-rapidity cut dependence of diffractive deep-inelastic scattering events at HERA may provide a sensitive test of models of diffraction. A comparison with the experimental cross section shows that the Donnachie-Landshoff model and a simple two-gluon exchange model of the pomeron model are disfavoured. However a model with a direct coupling of the pomeron to quarks is viable for a harder quark--pomeron form factor, as is a model based on the leading-twist operator contribution. We also consider a direct-coupling scalar pomeron model. We comment on the implications of these results for the determination of the partonic structure of the pomeron.Comment: 33 pages, LaTeX2e, 14 figures, uses axodra

    The Classification of the Simply Laced Berger Graphs from Calabi-Yau CY3CY_3 spaces

    Full text link
    The algebraic approach to the construction of the reflexive polyhedra that yield Calabi-Yau spaces in three or more complex dimensions with K3 fibres reveals graphs that include and generalize the Dynkin diagrams associated with gauge symmetries. In this work we continue to study the structure of graphs obtained from CY3CY_3 reflexive polyhedra. The objective is to describe the ``simply laced'' cases, those graphs obtained from three dimensional spaces with K3 fibers which lead to symmetric matrices. We study both the affine and, derived from them, non-affine cases. We present root and weight structurea for them. We study in particular those graphs leading to generalizations of the exceptional simply laced cases E6,7,8E_{6,7,8} and E6,7,8(1)E_{6,7,8}^{(1)}. We show how these integral matrices can be assigned: they may be obtained by relaxing the restrictions on the individual entries of the generalized Cartan matrices associated with the Dynkin diagrams that characterize Cartan-Lie and affine Kac-Moody algebras. These graphs keep, however, the affine structure present in Kac-Moody Dynkin diagrams. We conjecture that these generalized simply laced graphs and associated link matrices may characterize generalizations of Cartan-Lie and affine Kac-Moody algebras

    Neutrino Oscillations Induced by Gravitational Recoil Effects

    Get PDF
    Quantum gravitational fluctuations of the space-time background, described by virtual D branes, may induce neutrino oscillations if a tiny violation of the Lorentz invariance (or a violation of the equivalence principle) is imposed. In this framework, the oscillation length of massless neutrinos turns out to be proportional to M/E^2, where E is the neutrino energy and M is the mass scale characterizing the topological fluctuations in the vacuum. Such a functional dependence on the energy is the same obtained in the framework of loop quantum gravity.Comment: 5 pages, LaTex fil

    Implications of Anomalous U(1) Symmetry in Unified Models: the Flipped SU(5) x U(1) Paradigm

    Get PDF
    A generic feature of string-derived models is the appearance of an anomalous Abelian U(1)_A symmetry which, among other properties, constrains the Yukawa couplings and distinguishes the three families from each other. In this paper, we discuss in a model-independent way the general constraints imposed by such a U(1)_A symmetry on fermion masses, R-violating couplings and proton-decay operators in a generic flipped SU(5) x U(1)' model. We construct all possible viable fermion mass textures and give various examples of effective low-energy models which are distinguished from each other by their different predictions for B-, L- and R-violating effects. We pay particular attention to predictions for neutrino masses, in the light of the recent Super-Kamiokande data.Comment: 28 pages, reference adde

    Integrability of irrotational silent cosmological models

    Full text link
    We revisit the issue of integrability conditions for the irrotational silent cosmological models. We formulate the problem both in 1+3 covariant and 1+3 orthonormal frame notation, and show there exists a series of constraint equations that need to be satisfied. These conditions hold identically for FLRW-linearised silent models, but not in the general exact non-linear case. Thus there is a linearisation instability, and it is highly unlikely that there is a large class of silent models. We conjecture that there are no spatially inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class. Quantum Grav.; 16 pages Ioplpp

    Dynamical Formation of Horizons in Recoiling D Branes

    Get PDF
    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.Comment: 25 pages LaTeX, 4 eps figures include

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde
    • …
    corecore