889 research outputs found
3D N = 1 SYM Chern-Simons theory on the Lattice
We present a method to implement 3-dimensional N = 1 SUSY Yang-Mills theory
(a theory with two real supercharges containing gauge fields and an adjoint
Majorana fermion) on the lattice, including a way to implement the Chern-Simons
term present in this theory. At nonzero Chern-Simons number our implementation
suffers from a sign problem which will make the numerical effort grow
exponentially with volume. We also show that the theory with vanishing
Chern-Simons number is anomalous; its partition function identically vanishes.Comment: v2, minor changes: expanded discussion in section III c, typos
corrected, 17 pages, 9 figure
Viability of vector-tensor theories of gravity
We present a detailed study of the viability of general vector-tensor
theories of gravity in the presence of an arbitrary temporal background vector
field. We find that there are six different classes of theories which are
indistinguishable from General Relativity by means of local gravity
experiments. We study the propagation speeds of scalar, vector and tensor
perturbations and obtain the conditions for classical stability of those
models. We compute the energy density of the different modes and find the
conditions for the absence of ghosts in the quantum theory. We conclude that
the only theories which can pass all the viability conditions for arbitrary
values of the background vector field are not only those of the pure Maxwell
type, but also Maxwell theories supplemented with a (Lorentz type) gauge fixing
term.Comment: 13 pages, 2 figures, 1 table. Final version to appear in JCA
A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics
In a previous paper, we calculated the fully quantum-mechanical cross section
for electromagnetic excitation during peripheral heavy-ion collisions. Here, we
examine the sensitivity of that cross section to the detailed structure of the
projectile and target nuclei. At the transition energies relevant to nuclear
physics, we find the cross section to be weakly dependent on the projectile
charge radius, and to be sensitive to only the leading momentum-transfer
dependence of the target transition form factors. We exploit these facts to
derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the
long-wavelength limit. This improved spectrum includes the effects of
projectile size, the finite longitudinal momentum transfer required by
kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure
More about spontaneous Lorentz-violation and infrared modification of gravity
We consider a model with Lorentz-violating vector field condensates, in which
dispersion laws of all perturbations, including tensor modes, undergo
non-trivial modification in the infrared. The model is free of ghosts and
tachyons at high 3-momenta. At low 3-momenta there are ghosts, and at even
lower 3-momenta there exist tachyons. Still, with appropriate choice of
parameters, the model is phenomenologically acceptable. Beyond a certain large
distance scale and even larger time scale, the gravity of a static source
changes from that of General Relativity to that of van Dam--Veltman--Zakharov
limit of the Fierz--Pauli theory. Yet the late time cosmological evolution is
always determined by the standard Friedmann equation, modulo small correction
to the ``cosmological Planck mass'', so the modification of gravity cannot by
itself explain the accelerated expansion of the Universe. We argue that the
latter property is generic in a wide class of models with condensates.Comment: 15 pages, 1 figure, JHEP3.cls; Added reference
Lattice formulation of (2,2) supersymmetric gauge theories with matter fields
We construct lattice actions for a variety of (2,2) supersymmetric gauge
theories in two dimensions with matter fields interacting via a superpotential.Comment: 13 pages, 2 figures. Appendix added, references updated, typos fixe
Testing Lorentz invariance of dark matter
We study the possibility to constrain deviations from Lorentz invariance in
dark matter (DM) with cosmological observations. Breaking of Lorentz invariance
generically introduces new light gravitational degrees of freedom, which we
represent through a dynamical timelike vector field. If DM does not obey
Lorentz invariance, it couples to this vector field. We find that this coupling
affects the inertial mass of small DM halos which no longer satisfy the
equivalence principle. For large enough lumps of DM we identify a (chameleon)
mechanism that restores the inertial mass to its standard value. As a
consequence, the dynamics of gravitational clustering are modified. Two
prominent effects are a scale dependent enhancement in the growth of large
scale structure and a scale dependent bias between DM and baryon density
perturbations. The comparison with the measured linear matter power spectrum in
principle allows to bound the departure from Lorentz invariance of DM at the
per cent level.Comment: 42 pages, 9 figure
The incidence and make up of ability grouped sets in the UK primary school
The adoption of setting in the primary school (pupils ability grouped across classes for particular subjects) emerged during the 1990s as a means to raise standards. Recent research based on 8875 children in the Millennium Cohort Study showed that 25.8% of children in Year 2 were set for literacy and mathematics and a further 11.2% of children were set for mathematics or literacy alone. Logistic regression analysis showed that the best predictors of being in the top set for literacy or mathematics were whether the child was born in the Autumn or Winter and cognitive ability scores. Boys were significantly more likely than girls to be in the bottom literacy set. Family circumstances held less importance for setting placement compared with the childâs own characteristics, although they were more important in relation to bottom set placement. Children in bottom sets were significantly more likely to be part of a long-term single parent household, have experienced poverty, and not to have a mother with qualifications at NVQ3 or higher levels. The findings are discussed in relation to earlier research and the implications for schools are set out
Recommended from our members
In-place HEPA filter penetration test
We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical
A Symmetry for the Cosmological Constant
We study a symmetry, schematically Energy -> - Energy, which suppresses
matter contributions to the cosmological constant. The requisite negative
energy fluctuations are identified with a "ghost" copy of the Standard Model.
Gravity explicitly, but weakly, violates the symmetry, and naturalness requires
General Relativity to break down at short distances with testable consequences.
If this breakdown is accompanied by gravitational Lorentz-violation, the decay
of flat spacetime by ghost production is acceptably slow. We show that
inflation works in our scenario and can lead to the initial conditions required
for standard Big Bang cosmology.Comment: 18 pages, 3 figures, References correcte
CdWO4 scintillating bolometer for Double Beta Decay: Light and Heat anticorrelation, light yield and quenching factors
We report the performances of a 0.51 kg CdWO4 scintillating bolometer to be
used for future Double Beta Decay Experiments. The simultaneous read-out of the
heat and the scintillation light allows to discriminate between different
interacting particles aiming at the disentanglement and the reduction of
background contribution, key issue for next generation experiments. We will
describe the observed anticorrelation between the heat and the light signal and
we will show how this feature can be used in order to increase the energy
resolution of the bolometer over the entire energy spectrum, improving up to a
factor 2.6 on the 2615 keV line of 208Tl. The detector was tested in a 433 h
background measurement that permitted to estimate extremely low internal trace
contaminations of 232Th and 238U. The light yield of gamma/beta, alpha and
neutrons is presented. Furthermore we developed a method in order to correctly
evaluate the absolute thermal quenching factor of alpha particles in
scintillating bolometers.Comment: 8 pages 7 figure
- âŠ