19 research outputs found
Analysis of the Singular Function Boundary Integral Method for a Biharmonic Problem with One Boundary Singularity
In this article, we analyze the singular function boundary integral method (SFBIM) for a two-dimensional biharmonic problem with one boundary singularity, as a model for the Newtonian stick-slip flow problem. In the SFBIM, the leading terms of the local asymptotic solution expansion near the singular point are used to approximate the solution, and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. By means of Green's theorem, the resulting discretized equations are posed and solved on the boundary of the domain, away from the point where the singularity arises. We analyze the convergence of the method and prove that the coefficients in the local asymptotic expansion, also referred to as stress intensity factors, are approximated at an exponential rate as the number of the employed expansion terms is increased. Our theoretical results are illustrated through a numerical experiment
A singular function boundary integral method for the Laplace equation
Abstract. A singular function boundary integral method for Laplacian problems with boundary singularities is analyzed. In this method, the solution is approximated by the truncated asymptotic expansion for the solution near the singular point and the Dirichlet boundary conditions are weakly enforced by means of Lagrange multiplier functions. The resulting discrete problem is posed and solved on the boundary of the domain, away from the point of singularity. The main result of this paper is the proof of convergence of the method; in particular, we show that the method approximates the generalized stress intensity factors, i.e., the coefficients in the asymptotic expansion, at an exponential rate. A numerical example illustrating the convergence of the method is also presented
Solving laplacian problems with boundary singularities: a comparison of a singular function boundary integral method with the p/hp version of the finite element method
Abstract We solve a Laplacian problem over an L-shaped domain using a singular function boundary integral method as well as the p/hp finite element method. In the former method, the solution is approximated by the leading terms of the local asymptotic solution expansion, and the unknown singular coefficients are calculated directly. In the latter method, these coefficients are computed by post-processing the finite element solution. The predictions of the two methods are discussed and compared with recent numerical results in the literature