10,271 research outputs found
Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis
Angiosperms use a multi-layered meristem (typically L1, L2 and L3) to produce primordia that then develop into plant organs, A number of experiments show that communication between the cell layers is important for normal development. We examined whether the function of the flower developmental control gene AGAMOUS involves communication across these layers. We developed a mosaic strategy using the Cre/loxP site-specific recombinase system, and identified the sector structure for mosaics that produced mutant flowers. The major conclusions were that (1) AGAMOUS must be active in the L2 for staminoid and carpelloid tissues, (2) that AGAMOUS must be active in the L2 and the L3 for floral meristem determinacy, and (3) that epidermal cell identity can be communicated by the L2 to the L1 layer
CLAVATA1, a regulator of meristem and flower development in Arabidopsis
We have investigated the effects on plant development of mutations in the Arabidopsis thaliana CLAVATA1 gene. In clavata1 plants, vegetative, inflorescence and floral meristems are all enlarged relative to wild type. The apical meristem can fasciate in the more severe mutant alleles, and this fasciation can occur prior to the transition to flowering. Flowers of clavata1 plants can have increased numbers of organs in all four whorls, and can also have additional whorls not present in wild-type flowers. Double mutant combinations of clavata1 with agamous, apetala2, apetala3 and pistillata indicate that CLAVATA1 controls the underlying floral meristem structure upon which these homeotic genes act. Double mutant combinations of clavata1 with apetala1 and leafy indicate CLAVATA1 plays a role in establishing and maintaining floral meristem identity, in addition to its role in controlling meristem size. In support of this, RNA expression patterns of AGAMOUS and APETALA1 are altered in clavata1 flowers
Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems
Arabidopsis thaliana floral meristems are determinate structures that produce a defined number of organs, after which cell division ceases. A new recessive mutant, carpel factory (caf), converts the floral meristems to an indeterminate state. They produce extra whorls of stamens, and an indefinite number of carpels. Thus, CAF appears to suppress cell division in floral meristems. The function of CAF is partially redundant with the function of the CLAVATA (CLV) and SUPERMAN (SUP) genes, as caf clv and caf sup double mutants show dramatically enhanced floral meristem over-proliferation. caf mutant plants also show other defects, including absence of axillary inflorescence meristems, and abnormally shaped leaves and floral organs. The CAF gene was cloned and found to encode a putative protein of 1909 amino acids containing an N-terminal DExH/DEAD-box type RNA helicase domain attached to a C-terminal RNaseIII-like domain. A very similar protein of unknown function is encoded by a fungal and an animal genome. Helicase proteins are involved in a number of processes, including specific mRNA localization and mRNA splicing. RNase III proteins are involved in the processing of rRNA and some mRNA molecules. Thus CAF may act through some type of RNA processing event(s). CAF gives rise to two major transcripts of 2.5 and 6.2 kb. In situ hybridization experiments show that CAF RNA is expressed throughout all shoot tissues
The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis
The CLAVATA (CLV1 and CLV3) and SHOOT MERISTEMLESS (STM) genes specifically regulate shoot meristem development in Arabidopsis. CLV and STH appear to have opposite functions: c1v1 and Clv3 mutants accumulate excess undifferentiated cells in the shoot and floral meristem, while stm mutants fail to form the undifferentiated cells of the shoot meristem during embryonic development. We have identified a weak allele of stm (stm-2) that reveals STM is not only required for the establish- ment of the shoot meristem, but is also required for the continued maintenance of undifferentiated cells in the shoot meristem and for proper proliferation of cells in the floral meristem. We have found evidence of genetic interactions between the CLV and STM loci. clv1 and c1v3 mutations partially suppressed the stm-1 and stm-2 phenotypes, and were capable of suppression in a dominant fashion. clv stm double mutants and plants homozygous for stm but heterozygous for clv, while still lacking an embryonic shoot meristem, exhibited greatly enhanced postembryonic shoot and floral meristem development. Although stm phenotypes are recessive, stm mutations dominantly suppressed clv homozygous and heterozygous phenotypes. These results indicate that the stm phenotype is sensitive to the levels of CLV activity, while the clv phenotype is sensitive to the level of STM activity. We propose that these genes play related but opposing roles in the regulation of cell division and/or cell differentiation in shoot and floral meristems
Observation of a temperature dependent electrical resistance minimum above the magnetic ordering temperature in GdPdSi
Results on electrical resistivity, magnetoresistance, magnetic Results on
electrical resistivity, magnetoresistance, magnetic susceptibility, heat
capacity and Gd Mossbauer measurements on a Gd-based intermetallic compound,
GdPdSi are reported. A finding of interest is that the resistivity
unexpectedly shows a well-defined minimum at about 45 K, well above the long
range magnetic ordering temperature (21 K), a feature which gets suppressed by
the application of a magnetic field. This observation in a Gd alloy presents an
interesting scenario. On the basis of our results, we propose electron
localization induced by s-f (or d-f) exchange interaction prior to long range
magnetic order as a mechanism for the electrical resistance minimum.Comment: 4 pages, 4 figure
On the controversy concerning the definition of quark and gluon angular momentum
A major controversy has arisen in QCD as to how to split the total angular
momentum into separate quark and gluon contributions, and as to whether the
gluon angular momentum can itself be split, in a gauge invariant way, into a
spin and orbital part. Several authors have proposed various answers to these
questions and offered a variety of different expressions for the relevant
operators. I argue that none of these is acceptable and suggest that the
canonical expression for the momentum and angular momentum operators is the
correct and physically meaningful one. It is then an inescapable fact that the
gluon angular momentum operator cannot, in general, be split in a gauge
invariant way into a spin and orbital part. However, the projection of the
gluon spin onto its direction of motion i.e. its helicity is gauge invariant
and is measured in deep inelastic scattering on nucleons. The Ji sum rule,
relating the quark angular momentum to generalized parton distributions, though
not based on the canonical operators, is shown to be correct, if interpreted
with due care. I also draw attention to several interesting aspects of QED and
QCD, which, to the best of my knowledge, are not commented upon in the standard
textbooks on Field Theory.Comment: 41 pages; Some incorrect statements have been rectified and a
detailed discussion has been added concerning the momentum carried by quarks
and the Ji sum rule for the angular momentu
Achievement goals, self-handicapping, and performance: A 2 × 2 achievement goal perspective
Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the
trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the
work of Elliot et al. by experimentally promoting all four goals proposed by the 262 model (Elliot & McGregor, 2001),
measuring the participants’ own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 262 model. The participants (n¼138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues’ findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did
not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on selfhandicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals
Mutations in human dynamin block an intermediate stage in coated vesicle formation
The role of human dynamin in receptor-mediated endocytosis was investigated by transient expression of GTP-binding domain mutants in mammalian cells. Using assays which detect intermediates in coated vesicle formation, the dynamin mutants were found to block endocytosis at a stage after the initiation of coat assembly and preceding the sequestration of ligands into deeply invaginated coated pits. Membrane transport from the ER to the Golgi complex was unaffected indicating that dynamin mutants specifically block early events in endocytosis. These results demonstrate that mutations in the GTP-binding domain of dynamin block Tfn-endocytosis in mammalian cells and suggest that a functional dynamin GTPase is required for receptor-mediated endocytosis via clathrin-coated pits
De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey
The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects
from 1998-2005. Follow-up observations yielded 304 objects with good dynamical
classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances
with Neptune). The DES search fields are well documented, enabling us to
calculate the probability of detecting objects with particular orbital
parameters and absolute magnitudes at a randomized point in each orbit.
Grouping objects together by dynamical class leads, we estimate the orbital
element distributions (a, e, i) for the largest three classes (Classical, 3:2,
and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the
object size, we fit a power law to the number of objects for 8 classes with at
least 5 detected members (246 objects). The best Classical slope is
alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered
plus 5 resonances) are consistent in slope with the Classicals, though the
absolute number of objects is scaled. The exception to the power law relation
are the Centaurs (non-resonant with perihelia closer than Neptune, and thus
detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is
consistent with a knee in the H-distribution around H=7.2 as reported elsewhere
(Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived
magnitude distribution, the total number of objects (H<=7) in each class are:
Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1
(400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent
estimate for the number of Centaurs in the same H range is 13+/-5. If instead
all objects are divided by inclination into "Hot" and "Cold" populations,
following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while
alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A
- …