887 research outputs found

    Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33<z<0.83

    Full text link
    Hubble Space Telescope (HST) imaging of four rich, X-ray luminous, galaxy clusters (0.33<z<0.83) is used to produce quantitative morphological measurements for galaxies in their fields. Catalogs of these measurements are presented for 1642 galaxies brighter than F814W(AB)=23.0 . Galaxy luminosity profiles are fitted with three models: exponential disk, de Vaucouleurs bulge, and a disk-plus-bulge hybrid model. The best fit is selected and produces a quantitative assessment of the morphology of each galaxy: the principal parameters derived being B/T, the ratio of bulge to total luminosity, the scale lengths and half-light radii, axial ratios, position angles and surface brightnesses of each component. Cluster membership is determined using a statistical correction for field galaxy contamination, and a mass normalization factor (mass within boundaries of the observed fields) is derived for each cluster. In the present paper, this catalog of measurements is used to investigate the luminosity evolution of disk galaxies in the rich-cluster environment. Examination of the relations between disk scale-length and central surface brightness suggests, under the assumption that these clusters represent a family who share a common evolutionary history and are simply observed at different ages, that there is a dramatic change in the properties of the small disks (h < 2 kpc). This change is best characterized as a change in surface brightness by about 1.5 magnitude between z=0.3 and z=0.8 with brighter disks at higher redshifts.Comment: 53 pages, including 13 figures and 7 tables. Accepted for publication in the Astrophysical Journal Supplement Serie

    The Luminosity Function of Field Galaxies in the CNOC1 Redshift Survey

    Get PDF
    We have computed the luminosity function for 389 field galaxies from the Canadian Network for Observational Cosmology cluster redshift survey (CNOC1), over redshifts z = 0.2-0.6. We find Schechter parameters M^* - 5 log h = -19.6 \pm 0.3 and \alpha = -0.9 \pm 0.2 in rest-frame B_{AB}. We have also split our sample at the color of a redshifted but nonevolving Sbc galaxy, and find distinctly different luminosity functions for red and blue galaxies. Red galaxies have a shallow slope \alpha \approx -0.4 and dominate the bright end of the luminosity function, while blue galaxies have a steep \alpha \approx -1.4 and prevail at the faint end. Comparisons of the CNOC1 results to those from the Canada-France (CFRS) and Autofib redshift surveys show broad agreement among these independent samples, but there are also significant differences which will require larger samples to resolve. Also, in CNOC1 the red galaxy luminosity density stays about the same over the range z = 0.2-0.6, while the blue galaxy luminosity density increases steadily with redshift. These results are consistent with the trend of the luminosity density vs. redshift relations seen in the CFRS, though the normalizations of the luminosity densities appear to differ for blue galaxies. Comparison to the local luminosity function from the Las Campanas redshift survey (LCRS) shows that the luminosity density at z \approx 0.1 is only about half that seen at z \approx 0.4. A change in the luminosity function shape, particularly at the faint end, appears to be required to match the CNOC1 and LCRS luminosity functions, if galaxy evolution is the sole cause of the differences seen. However, it should be noted that the specific details of the construction of different surveys may complicate the comparison of results and so may need to be considered carefully.Comment: 22 pages, including 6 postscript figures, uses AASTEX v4.0 style files. Corrected minor typos and updated references. Results and conclusions unchanged. Final version to appear in the Astrophysical Journa

    A Proto-Galaxy Candidate at z=2.7 Discovered by Its Young Stellar Population

    Get PDF
    A protogalaxy candidate at z=2.72 has been discovered serendipitously by the CNOC cluster redshift survey. The candidate is an extremely luminous (V=20.5 mag, absolute mag -26) and well resolved disk-like galaxy. The redshift is identified from a dozen strong UV absorption lines. No emission lines are found between 1000 and 2000A (rest), including Ly alpha. The photometric data fit the spectral energy distributions of a stellar population from 400 million years to an arbitrarily young age, dependent on the amount of dust extinction. However, the presence of a strong P-Cygni profile in CIV~indicates that a very substantial component of the stellar population must be younger than ~ 10 Myr. We interpret this object as an early-type galaxy observed within about 100 million years of the initial burst of star formation which created most of its stellar mass. Because of the resolved, regular, and smooth nature of the object, it is unlikely that the high luminosity is due to gravitational lensing.Comment: 31 page, Latex file with 9 encapsulated figures, requiring aasppt.sty and epsf.sty (included). Full uuencoded ps file available from: http://manaslu.astro.utoronto.ca/~carlberg/cnoc/general.html Accepted by Astronomical Journal, in press, May 199

    Velocity Dispersions of CNOC Clusters and the Evolution of the Cluster Abundance

    Full text link
    We present the results of the analysis of the internal velocity dispersions, \sigma_v, for the CNOC sample of distant galaxy clusters, based on an interlopers removal algorithm, which is different from that originally applied by Carlberg et al. (1996, C96). We find that the resulting \sigma_v values are consistent within <10% with the original C96 estimates. This result points in favor of a substantial robustness of currently applied methods for optical studies of the internal cluster dynamics. The resulting distribution of velocity dispersions is used to trace the redshift evolution of the cluster abundance with the aim of constraining the matter density parameter, \Omega_m. We find that constraints on \Omega_m are very sensitive to the adopted value of \sigma_8, as obtainable from the local cluster abundance: as \sigma_8 varies from 0.5 to 0.6 (for Omega_m=1), the best fitting Omega_m varies in the range 0.3-1.0.Comment: 11 pages, 8 figures, 1 table, LateX, uses apj.sty, ApJ, corrected some typo
    • …
    corecore