18 research outputs found
Writing Effective Insurance Justification Letters for Cancer Genetic Testing: A Streamlined Approach
Germline PTEN Promoter Mutations and Deletions in Cowden/Bannayan-Riley-Ruvalcaba Syndrome Result in Aberrant PTEN Protein and Dysregulation of the Phosphoinositol-3-Kinase/Akt Pathway
Germline intragenic mutations in PTEN are associated with 80% of patients with Cowden syndrome (CS) and 60% of patients with Bannayan-Riley-Ruvalcaba syndrome (BRRS). The underlying genetic causes remain to be determined in a considerable proportion of classic CS and BRRS without a polymerase chain reaction (PCR)-detectable PTEN mutation. We hypothesized that gross gene deletions and mutations in the PTEN promoter might alternatively account for a subset of apparently mutation-negative patients with CS and BRRS. Using real time and multiplex PCR techniques, we identified three germline hemizygous PTEN deletions in 122 apparently mutation-negative patients with classic CS (N=95) or BRRS (N=27). Fine mapping suggested that one deletion encompassed the whole gene and the other two included exon 1 and encompassed exons 1–5 of PTEN, respectively. Two patients with the deletion were diagnosed with BRRS, and one patient with the deletion was diagnosed with BRRS/CS overlap (features of both). Thus 3 (11%) of 27 patients with BRRS or BRRS/CS-overlap had PTEN deletions. Analysis of the PTEN promoter revealed nine cases (7.4%) harboring heterozygous germline mutations. All nine had classic CS, representing almost 10% of all subjects with CS. Eight had breast cancers and/or benign breast tumors but, otherwise, oligo-organ involvement. PTEN protein analysis, from one deletion-positive and five PTEN-promoter-mutation–positive samples, revealed a 50% reduction in protein and multiple bands of immunoreactive protein, respectively. In contrast, control samples showed only the expected band. Further, an elevated level of phosphorylated Akt was detected in the five promoter-mutation–positive samples, compared with controls, indicating an absence of or marked reduction in functional PTEN. These data suggest that patients with BRRS and CS without PCR-detected intragenic PTEN mutations be offered clinical deletion analysis and promoter-mutation analysis, respectively
Challenges and Errors in Genetic Testing: The Fifth Case Series.
PURPOSE: In this ongoing case series, 33 genetic testing cases are documented in which tests were recommended, ordered, interpreted, or used incorrectly and/or in which clinicians faced challenges related to history/reports provided by patients or laboratories.
METHODS: An invitation to submit cases of challenges or errors in genetic testing was issued to the general National Society of Genetic Counselors Listserv, the National Society of Genetic Counselors Cancer Special Interest Group members, as part of a case series with Precision Oncology News, and via social media (i.e., Facebook, Twitter, LinkedIn). Deidentified clinical documentation was requested and reviewed when available. Thirty-three cases were submitted, reviewed, and accepted. A thematic analysis was performed. Submitters were asked to approve cases before submission.
RESULTS: All cases took place in the United States, involved hereditary cancer testing and/or findings in cancer predisposition genes, and involved medical-grade genetic testing, direct-to-consumer testing, or research genetic testing. In 9 cases, test results were misinterpreted, leading to incorrect screening or risk-reducing procedures being performed/recommended. In 5 cases, incorrect or unnecessary testing was ordered/recommended. In 3 cases, incorrect clinical diagnoses were made, or opportunities for diagnoses were delayed. In 3 cases, errors or challenges arose related to medical intervention after testing or reported genetic diagnosis. In 2 cases, physicians provided incorrect information related to the inheritance pattern of a syndrome. In 2 cases, there were challenges related to the interpretation of genetic variants. In 2 cases, challenges arose after direct-to-consumer testing. One case involved test results that should never have been reported based on sample quality. In 1 case, a patient presented a falsified test result. In 5 cases, multiple errors were made.
DISCUSSION: As genetic testing continues to become more complicated and common, it is critical that patients and nongenetics providers have access to accurate and timely genetic counseling information. Even as multiple medical bodies highlight the value of genetic counselors (GCs), tension exists in the genomics community as GCs work toward licensure and Medicare provider status. It is critical that health care communities leverage, rather than restrict, the expertise and experience of GCs so that patients can benefit from, and not be harmed by, genetic testing. In order to responsibly democratize genomics, it will be important for genetics and nongenetic health care providers to collaborate and use alternative service delivery models and technology solutions at point of care. To deliver on the promise of precision medicine, accurate resources and tools must be utilized
Occult ovarian cancers identified at risk-reducing salpingo-oophorectomy in a prospective cohort of BRCA1/2 mutation carriers
Risk-reducing salpingo-oophorectomy (RRSO) is widely used for cancer risk reduction in BRCA1 or BRCA2 (BRCA1/2) mutation carriers. Occult ovarian/fallopian tube cancers (OOC) detected at the time of RRSO have been reported in several studies with wide variability in reported prevalence. We estimated the prevalence of OOC in a prospective cohort of 647 BRCA1/2 mutation carriers from 18 centers (PROSE consortium) who under-went RRSO between 2001 and 2008. OOC was detected in 16 of 647 women (2.5%). The mean age at RRSO was 51.7 in those with OOC versus 46.6 in those without OOC (P = 0.017). Twelve of the 16 OOCs (75%) were diagnosed in women with BRCA1 mutations. Thirty-eight percent of women with OOC had stage 1 cancer versus none of the women in the PROSE database diagnosed with ovarian cancer outside of screening. Among 385 women (60%) in whom pathology reports were available for central review, 246 (64%) RRSOs were performed at participating PROSE centers while 139 (36%) were performed at local sites. Ovarian and fallopian tube tissues removed at major genetics referral centers were significantly more likely to have been examined in toto compared to specimens obtained at non-referral centers (75% vs. 30%, P < 0.001). Our results confirm that OOC may be found at the time of RRSO in BRCA1/2 mutation carriers and suggest that OOC are of a more favorable stage than cancers found outside RRSO. An unacceptably high proportion of pathologic examinations did not adequately examine ovaries and fallopian tubes obtained at RRSO
Recommended from our members
Use of risk-reducing surgeries in a prospective cohort of 1,499 BRCA1 and BRCA2 mutation carriers.
Inherited mutations in BRCA1 or BRCA2 (BRCA1/2) confer very high risk of breast and ovarian cancers. Genetic testing and counseling can reduce risk and death from these cancers if appropriate preventive strategies are applied, including risk-reducing salpingo-oophorectomy (RRSO) or risk-reducing mastectomy (RRM). However, some women who might benefit from these interventions do not take full advantage of them. We evaluated RRSO and RRM use in a prospective cohort of 1,499 women with inherited BRCA1/2 mutations from 20 centers who enrolled in the study without prior cancer or RRSO or RRM and were followed forward for the occurrence of these events. We estimated the age-specific usage of RRSO/RRM in this cohort using Kaplan-Meier analyses. Use of RRSO was 45% for BRCA1 and 34% for BRCA2 by age 40, and 86% for BRCA1 and 71% for BRCA2 by age 50. RRM usage was estimated to be 46% by age 70 in both BRCA1 and BRCA2 carriers. BRCA1 mutation carriers underwent RRSO more frequently than BRCA2 mutation carriers overall, but the uptake of RRSO in BRCA2 was similar after mutation testing and in women born since 1960. RRM uptake was similar for both BRCA1 and BRCA2. Childbearing influenced the use of RRSO and RRM in both BRCA1 and BRCA2. Uptake of RRSO is high, but some women are still diagnosed with ovarian cancer before undergoing RRSO. This suggests that research is needed to understand the optimal timing of RRSO to maximize risk reduction and limit potential adverse consequences of RRSO