442 research outputs found
Structural Relaxation of a Gel Modeled by Three Body Interactions
We report a molecular dynamics simulation study of a model gel whose
interaction potential is obtained by modifying the three body Stillinger-Weber
model potential for silicon. The modification reduces the average coordination
number, and suppresses the liquid-gas phase coexistence curve. The low density,
low temperature equilibrium gel that can thus form exhibits interesting
dynamical behavior, including compressed exponential relaxation of density
correlations. We show that motion responsible for such relaxation has ballistic
character, and arises from the motion of chain segments in the gel without the
restructuring of the gel network.Comment: 5 pages, 5 figure
Pattern Dynamics of Vortex Ripples in Sand: Nonlinear Modeling and Experimental Validation
Vortex ripples in sand are studied experimentally in a one-dimensional setup
with periodic boundary conditions. The nonlinear evolution, far from the onset
of instability, is analyzed in the framework of a simple model developed for
homogeneous patterns. The interaction function describing the mass transport
between neighboring ripples is extracted from experimental runs using a
recently proposed method for data analysis, and the predictions of the model
are compared to the experiment. An analytic explanation of the wavelength
selection mechanism in the model is provided, and the width of the stable band
of ripples is measured.Comment: 4 page
Phenomenological model for symmetry breaking in chaotic system
We assume that the energy spectrum of a chaotic system undergoing symmetry
breaking transitions can be represented as a superposition of independent level
sequences, one increasing on the expense of the others. The relation between
the fractional level densities of the sequences and the symmetry breaking
interaction is deduced by comparing the asymptotic expression of the
level-number variance with the corresponding expression obtained using the
perturbation theory. This relation is supported by a comparison with previous
numerical calculations. The predictions of the model for the
nearest-neighbor-spacing distribution and the spectral rigidity are in
agreement with the results of an acoustic resonance experiment.Comment: accepted for publication in Physical Review
Computer Simulation Study of the Phase Behavior and Structural Relaxation in a Gel-Former Modeled by Three Body Interactions
We report a computer simulation study of a model gel-former obtained by
modifying the three-body interactions of the Stillinger-Weber potential for
silicon. This modification reduces the average coordination number and
consequently shifts the liquid-gas phase coexistence curve to low densities,
thus facilitating the formation of gels without phase separation. At low
temperatures and densities, the structure of the system is characterized by the
presence of long linear chains interconnected by a small number of three
coordinated junctions at random locations. At small wave-vectors the static
structure factor shows a non-monotonic dependence on temperature, a behavior
which is due to the competition between the percolation transition of the
particles and the stiffening of the formed chains. We compare in detail the
relaxation dynamics of the system as obtained from molecular dynamics with the
one obtained from Monte Carlo dynamics. We find that the bond correlation
function displays stretched exponential behavior at moderately low temperatures
and densities, but exponential relaxation at low temperatures. The bond
lifetime shows an Arrhenius behavior, independent of the microscopic dynamics.
For the molecular dynamics at low temperatures, the mean squared displacement
and the (coherent and incoherent) intermediate scattering function display at
intermediate times a dynamics with ballistic character and we show that this
leads to compressed exponential relaxation. For the Monte Carlo dynamics we
find always an exponential or stretched exponential relaxation. Thus we
conclude that the compressed exponential relaxation observed in experiments is
due to the out-of-equilibrium dynamics
The hydraulic jump as a white hole
In the geometry of the circular hydraulic jump, the velocity of the liquid in
the interior region exceeds the speed of capillary-gravity waves (ripplons),
whose spectrum is `relativistic' in the shallow water limit. The velocity flow
is radial and outward, and thus the relativistic ripplons cannot propagating
into the interior region. In terms of the effective 2+1 dimensional
Painleve-Gullstrand metric appropriate for the propagating ripplons, the
interior region imitates the white hole. The hydraulic jump represents the
physical singularity at the white-hole horizon. The instability of the vacuum
in the ergoregion inside the circular hydraulic jump and its observation in
recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen
and C. Chevallier in physics/0508200 are discussed.Comment: 10 pages, no figures, references added, version submitted to JETP
Letter
Haematologic and Clinical Chemical values in 3 and 6 months old Göttingen minipigs
Blood samples were collected from sixty healthy Göttingen minipigs. fifteen males and fifteen females at the age of three months and fifteen males and fifteen females at the age of six months. The samples were taken at the breeder’s facilities. The samples were analysed for nineteen haematological and twenty~six clinical chemical parameters. Means, standard deviations and lowest and highest values are presented. In general the parameters were comparable with those reponed for other breeds of miniature and domestic swine. The white blood cell count, the percentages of neutrophils and monocytes and serum globulin levels were lower in these microbiologically defined minipigs compared with conventionally rearedpigs and minipigs. Three litter mates had a complex of abnormally high serum creatine kinase, lactate dehydrogenase, uspartate aminotransterase and alanine aminotmnsferase levels
Inclusive 2H(3He,t) reaction at 2 GeV
The inclusive 2H(3He,t) reaction has been studied at 2 GeV for energy
transfers up to 500 MeV and scattering angles from 0.25 up to 4 degrees. Data
are well reproduced by a model based on a coupled-channel approach for
describing the NN and N Delta systems. The effect of final state interaction is
important in the low energy part of the spectra. In the delta region, the
cross-section is very sensitive to the effects of Delta-N interaction and Delta
N - NN process. The latter has also a large influence well below the pion
threshold. The calculation underestimates the experimental cross-section
between the quasi-elastic and the delta peaks; this is possibly due to
projectile excitation or purely mesonic exchange currents.Comment: 9 pages, 9 figures, accepted for publication in EPJ
The Stability Balloon for Two-dimensional Vortex Ripple Patterns
Patterns of vortex ripples form when a sand bed is subjected to an
oscillatory fluid flow. Here we describe experiments on the response of regular
vortex ripple patterns to sudden changes of the driving amplitude a or
frequency f. A sufficient decrease of f leads to a "freezing" of the pattern,
while a sufficient increase of f leads to a supercritical secondary "pearling"
instability. Sufficient changes in the amplitude a lead to subcritical
secondary "doubling" and "bulging" instabilities. Our findings are summarized
in a "stability balloon" for vortex ripple pattern formation.Comment: 4 pages, 5 figure
- …