19 research outputs found

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Prevalence of Hepatitis E Virus Antibodies, Israel, 2009–2010

    No full text
    We investigated prevalence of hepatitis E virus in a sample of the population of Israel. The overall seroprevalence of antibodies to the virus was 10.6% (95% CI 8.4%–13.0%); age-adjusted prevalence was 7.6%. Seropositivity was associated with age, Arab ethnicity, low socioeconomic status, and birth in Africa, Asia, or the former Soviet Union

    Secondary sclerosing cholangitis following major burn

    No full text
    Background and aims. Secondary sclerosing cholangitis in critically ill patients (SSC-CIP) is a relatively new previously unrecognized entity which may lead to severe biliary disease with rapid progression to cirrhosis. We present for the first time a case series of patients with rapidly progressive SSC-CIP requiring aggressive intensive care treatment following major burn injury.Results. SSC-CIP was diagnosed in 4 consecutive patients hospitalized due to major burn injuries at our Intensive Care Unit (ICU). SSC-CIP was diagnosed when ERCP (n = 1) or MRCP (n = 3) demonstrated irregular intrahepatic bile ducts with multiple strictures and dilatations and, when a liver biopsy (n = 3) demonstrated severe cholestasis and bile duct damage. All patients were males; none of whom had pre-existing liver disease. Ages: 18-56 y. All patients suffered from severe (grade 2-3) burn injuries with total burn surface area ranging from 35 to 95%. Mean length of ICU hospitalization was 129.2 ± 53.0 days. All patients required mechanical ventilation (with a mean PEEP of 8.4 ± 2.1 cm H2O) and the administration of catecholamines for hemodynamic stabilization. All patients demonstrated severe cholestasis. Blood cultures and cultures from drained liver abscesses grew hospital acquired multiple resistant bacteria. Liver cirrhosis developed within 12 months. One patient underwent orthotopic liver transplantation. Two patients (50%) died. In conclusion, SSC-CIP following major burn injury is a rapidly progressive disease with a poor outcome. Liver cirrhosis developed rapidly. Awareness of this grave complication is needed for prompt diagnosis and considerations of a liver transplantation

    Predictors of mortality in COVID-19 patients treated with convalescent plasma therapy

    No full text
    Several options to treat hospitalized severe COVID-19 patients have been suggested. The study aimed to describe survival in patients treated with convalescent COVID plasma (CCP) and to identify in-hospital mortality predictors. This prospective cohort study examined data from 112 severe COVID-19 patients hospitalized in the Corona Departments in an acute care hospital who received two units of CCP (at least one of them high-titer). Demographic and medical data was retrieved from the patients’ electronic health records (EHR). Possible predictors for in-hospital mortality were analyzed in a univariate analysis and those found to be clinically significant were further analyzed in a multivariable analysis. Median age was 67 years (IQR 55–74) and 66 (58.9%) of them were males. Of them, 20 (17.9%) died in hospital. On multivariable analysis diabetes mellitus (p = 0.004, OR 91.54), mechanical ventilation (p = 0.001, OR 59.07) and lower albumin levels at treatment (p = 0.027, OR 0.74) were significantly associated with increased in-hospital mortality. In our study, in-hospital mortality in patients receiving CCP is similar to that reported for the general population, however certain variables mentioned above were associated with increased in-hospital mortality. In the literature, these variables were also associated with a worse outcome in patients with COVID-19 who did not receive CCP. As evidence points toward a benefit from CCP treatment in immunocompromised patients, we believe the above risk factors can further define COVID-19 patients at increased risk for mortality, enabling the selection of candidates for early treatment in an outpatient setting if possible

    HBV-RNA, Quantitative HBsAg, Levels of HBV in Peripheral Lymphocytes and HBV Mutation Profiles in Chronic Hepatitis B

    No full text
    A comprehensive characterization of chronic HBV (CHB) patients is required to guide therapeutic decisions. The cumulative impact of classical and novel biomarkers on the clinical categorization of these patients has not been rigorously assessed. We determined plasma HBV-RNA and HBsAg levels, HBV in peripheral lymphocytes (PBMCs) and HBV mutation profiles in CHB patients. Patient demographics (n = 139) and classical HBV biomarkers were determined during a clinical routine. HBV-RNA in plasma and HBV-DNA in PBMCs were determined by RT-PCR. HBsAg levels were determined using Architect. In samples with HBV-DNA viral load >1000 IU/mL, genotype mutations in precore (PC), basal core promoter (BCP), HBsAg and Pol regions were determined by sequencing. Most patients (n = 126) were HBeAg-negative (HBeAgNeg) with significantly lower levels of HBV-RNA, HBV-DNA and HBsAg compared to HBeAg-positive (HBeAgPos) patients (p < 0.05). HBV genotype D prevailed (61/68), and >95% had BCP/PC mutations. Escape mutations were identified in 22.6% (13/63). HBeAgNeg patients with low levels of HBsAg (log IU ≤ 3) were older and were characterized by undetectable plasma HBV-DNA and undetectable HBV-RNA but not undetectable HBV-DNA in PBMCs compared to those with high HBsAg levels. In >50% of the studied HBeAgNeg patients (66/126), the quantitation of HBsAg and HBV-RNA may impact clinical decisions. In conclusion, the combined assessment of classical and novel serum biomarkers, especially in HBeAgNeg patients, which is the largest group of CHB patients in many regions, may assist in clinical decisions. Prospective studies are required to determine the real-time additive clinical advantage of these biomarkers

    Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague

    No full text
    Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains

    Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague

    No full text
    Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains

    Efficient targeted degradation via reversible and irreversible covalent PROTACs

    No full text
    PROteolysis Targeting Chimeras (PROTACs) represent an exciting inhibitory modality with many advantages, including sub-stoichiometric degradation of targets. Their scope, though, is still limited to-date by the requirement for a sufficiently potent target binder. A solution that proved useful in tackling challenging targets is the use of electrophiles to allow irreversible binding to the target. However, such binding will negate the catalytic nature of PROTACs. Reversible covalent PROTACs potentially offer the best of both worlds. They possess the potency and selectivity associated with the formation of the covalent bond, while being able to dissociate and regenerate once the protein target is degraded. Using Bruton’s tyrosine kinase (BTK) as a clinically relevant model system, we show efficient covalent degradation by non-covalent, irreversible covalent and reversible covalent PROTACs, with 85% degradation. Our data suggests that part of the degradation by our irreversible covalent PROTACs is driven by reversible binding prior to covalent bond formation, while the reversible covalent PROTACs drive degradation primarily by covalent engagement. The PROTACs showed enhanced inhibition of B cell activation compared to Ibrutinib, and exhibit potent degradation of BTK in patients-derived primary chronic lymphocytic leukemia cells. The most potent reversible covalent PROTAC, RC-3, exhibited enhanced selectivity towards BTK compared to non-covalent and irreversible covalent PROTACs. These compounds may pave the way for the design of covalent PROTACs for a wide variety of challenging targets.</p
    corecore