74 research outputs found

    Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity

    Get PDF
    Like the immune response itself, our efforts to understand the “rules” for self–nonself discrimination are constantly evolving. The discovery of pattern recognition receptors—the Toll-like receptor (TLR) family in particular—shifted the emphasis of self–nonself recognition from lymphocytes functioning in the adaptive immune system to antigen-presenting cells (APCs) functioning in the innate immune system. Two new articles, one in a recent issue (1) and one in this issue (see Vollmer et al. [2] on p. 1575), demonstrate that antigen–antibody complexes containing RNAs activate B lymphocytes and dendritic cells (DCs) through interaction with TLR7 and/or TLR8. From these and other papers, one begins to see how specific types of autoantigens—by virtue of their capacity to act as TLR ligands—favor autoantibody production. This is known as the Toll hypothesis

    Transcriptional Suppression of Interleukin-12 Gene Expression following Phagocytosis of Apoptotic Cells

    Get PDF
    AbstractPhagocytosis of apoptotic cells usually results in an anti-inflammatory state with inhibition of proinflammatory cytokines such as IL-12. How apoptotic cell-derived signals regulate IL-12 gene expression is not understood. We demonstrate that cell-cell contact with apoptotic cells is sufficient to induce profound inhibition of IL-12 production by activated macrophages. Phosphatidylserine could mimic the inhibitory effect. The inhibition does not involve autocrine or paracrine actions of IL-10 and TGF-β. We report the identification, purification, and cloning of a novel zinc finger nuclear factor, named GC binding protein (GC-BP), that is induced following phagocytosis of apoptotic cells by macrophages or by treatment with phosphatidylserine. GC-BP selectively inhibits IL-12 p35 gene transcription by binding to its promoter in vitro and in vivo, thus decreasing IL-12 production. Blocking GC-BP by RNA interference restores IL-12 p35 transcription and IL-12 p70 synthesis. Finally, GC-BP itself undergoes functionally significant tyrosine dephosphorylation in response to apoptotic cells

    I-PLA2 Activation during Apoptosis Promotes the Exposure of Membrane Lysophosphatidylcholine Leading to Binding by Natural Immunoglobulin M Antibodies and Complement Activation

    Get PDF
    Deficiency of serum immunoglobulin (Ig)M is associated with the development of a lupus-like disease in mice. Recent studies suggest that classical complement components facilitate the clearance of apoptotic cells and that failure to do so predisposes mice to lupus. Since IgM is a potent activator of the classical complement pathway, we examined IgM binding to dying cells. IgM, but not IgG, bound to apoptotic T cells through the Fab′ portion of the antibody. Exposure of apoptotic cell membranes to phospholipase (PL) A2 increased, whereas PLD reduced, IgM binding and complement activation. Absorption studies combined with direct plate binding assays, revealed that IgM antibodies failed to bind to phosphatidyl lipids, but did recognize lysophosphatidylcholine and the phosphorylcholine head group. Both iPLA2 and cPLA2 are activated during apoptosis. Since inhibition of iPLA2, but not cPLA2, attenuated IgM binding to apoptotic cells, these results strongly suggest that the endogenous calcium independent PLA2, iPLA2, is involved in the hydrolysis of plasma membrane phospholipids and exposure of the epitope(s) recognized by IgM. We propose that recognition of dying cells by natural IgM antibodies is, in part, responsible for complement activation on dying cells leading to their safe clearance

    C1q deficiency leads to the defective suppression of IFN-α in response to nucleoprotein containing immune complexes

    Get PDF
    Almost all humans with homozygous deficiency of C1q develop systemic lupus erythematosus (SLE). The precise cellular mechanism (s) by which C1q prevents the development of SLE remains unclear. In this study, we tested the role of C1q in the regulation of IFN-α induced by immune complexes (ICs) in vitro, as well as the consequences of lack of C1q in vivo. Our experiments revealed that C1q preferentially promotes the binding of SLE ICs to monocytes rather than plasmacytoid dendritic cells, but this inhibition was not due to the induction of inhibitory soluble factors. The presence of C1q also altered the trafficking of ICs within monocytes such that ICs persisted in early endosomes. In patients with C1q deficiency, serum and cerebrospinal fluid levels of IFN-α and IFN-γ–inducible protein-10 levels were elevated and strongly correlated with Ro autoantibodies, demonstrating the clinical significance of these observations. These studies therefore associate C1q deficiency with defective regulation of IFN-α and provide a better understanding of the cellular mechanisms by which C1q prevents the development of IC-stimulated autoimmunity
    • …
    corecore