7 research outputs found

    Tuberculosis: Time for a new perspective?

    No full text
    Transmission of Mycobacterium tuberculosis (Mtb) continues uninterrupted. Pre-exposure vaccination remains a central focus of tuberculosis research but 25 years of follow up is needed to determine whether a novel childhood vaccination regime protects from adult disease, or like BCG assists Mtb dissemination by preventing childhood illness but not infective adult pulmonary tuberculosis. Therefore, different strategies to interrupt the life cycle of Mtb need to be explored. This personal perspective discusses alternative approaches that may be delivered in a shorter time frame

    Matrix metalloproteinases in destructive pulmonary pathology

    No full text
    Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that have a number of important physiological roles including remodelling of the extracellular matrix, facilitating cell migration, cleaving cytokines, and activating defensins. However, excess MMP activity may lead to tissue destruction. The biology of MMP and the role of these proteases in normal pulmonary immunity are reviewed, and evidence that implicates excess MMP activity in causing matrix breakdown in chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), sarcoidosis, and tuberculosis is discussed. Evidence from both clinical studies and animal models showing that stromal and inflammatory cell MMP expression leads to immunopathology is examined, and the mechanisms by which excess MMP activity may be targeted to improve clinical outcomes are discussed

    Filter sterilization of highly infectious samples to prevent false negative analysis of matrix metalloproteinase activity

    No full text
    Matrix metalloproteinases (MMPs) are implicated in the immunopathology of numerous infectious diseases. High risk samples such as those generated after infection with Mycobacterium tuberculosis require filter sterilization for safe analysis of MMP concentrations. Here, we report that commercial filter membranes may cause artefacts by binding MMPs. Anopore 0.2 microM membrane filtration reduced MMP-1 concentrations to undetectable levels by zymography and Western blotting. Polypropylene 0.45 microM filtration removed some MMP-1, while Polysulphone, Durapore and Bio-inert 0.2 microM membranes did not remove MMP-1. Anopore filtration also removed all MMP-7 and -9 activity, suggesting that the conserved MMP catalytic domain binds the membrane. This study demonstrates the importance of selecting the appropriate filter in MMP analysis to avoid incorrectly excluding MMP involvement in infection-related immunopathology

    Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1

    No full text
    Rationale: Pulmonary cavitation is fundamental to the global success of Mycobacterium tuberculosis. However, the mechanisms of this lung destruction are poorly understood. The biochemistry of lung matrix predicts matrix metalloproteinase (MMP) involvement in immunopathology.Methods: We investigated gene expression of all MMPs, proteins with a disintegrin and metalloproteinase domain, and tissue inhibitors of metalloproteinases in M. tuberculosis–infected human macrophages by real-time polymerase chain reaction. MMP secretion was measured by zymography and Western analysis, and expression in patients with pulmonary tuberculosis was localized by immunohistochemistry.Results: MMP-1 and MMP-7 gene expression and secretion are potently upregulated by M. tuberculosis, and no increase in tissue inhibitor of metalloproteinase expression occurs to oppose their activity. Dexamethasone completely suppresses MMP-1 but not MMP-7 gene expression and secretion. In patients with active tuberculosis, macrophages express MMP-1 and MMP-7 adjacent to areas of tissue destruction. MMP-1 but not MMP-7 expression and secretion are relatively M. tuberculosis specific, are not upregulated by tuberculosis- associated cytokines, and are prostaglandin dependent. In contrast, the vaccine M. bovis bacillus Calmette-Guérin (BCG) does not stimulate MMP-1 secretion from human macrophages, although M. tuberculosis and BCG do upregulate MMP-7 equally. BCG-infected macrophages secrete reduced prostaglandin E2 concentrations compared with M. tuberculosis–infected macrophages, and prostaglandin pathway supplementation augments MMP-1 secretion from BCG-infected cells.Conclusions: M. tuberculosis specifically upregulates MMP-1 in a cellular model of human infection and in patients with tuberculosis. In contrast, vaccine BCG, which does not cause lung cavitation, does not upregulate prostaglandin E2–dependent MMP-1 secretion

    Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch

    No full text
    Pulmonary cavitation is vital to the persistence and spread of Mycobacterium tuberculosis (MTb), but mechanisms underlying this lung destruction are poorly understood. Fibrillar type I collagen provides the lung's tensile strength, and only matrix metalloproteinases (MMPs) can degrade it at neutral pH. We investigated MTb-infected lung tissue and found that airway epithelial cells adjacent to tuberculosis (Tb) granulomas expressed a high level of MMP-1 (interstitial collagenase). Conditioned media from MTb-infected monocytes (CoMTb) up-regulated epithelial cell MMP-1 promoter activity, gene expression, and secretion, whereas direct MTb infection did not. CoMTb concurrently suppressed tissue inhibitor of metalloprotease-1 (TIMP-1) secretion, further promoting matrix degradation, and in Tb patients very low TIMP-1 expression was detected. MMP-1 up-regulation required synergy between TNF-alpha and G protein-coupled receptor signaling pathways. CoMTb stimulated p38 MAPK phosphorylation, and this is the point of TNF-alpha synergy with G protein-coupled receptor activation. Furthermore, p38 phosphorylation was the switch up-regulating MMP-1 activity and decreasing TIMP-1 secretion. Activated p38 localized to MMP-1-secreting airway epithelial cells in Tb patients. These data reveal a monocyte-epithelial cell network whereby MTb may drive tissue destruction, and they demonstrate that p38 phosphorylation is a key regulatory point in the generation of a matrix-degrading phenotype
    corecore