8,757 research outputs found
Exploring the environment, discovering learning resources and creating low cost training and development
School of Managemen
Hyperelliptic jacobians with real multiplication
Let be a field of characteristic , and let be a sextic
polynomial irreducible over with no repeated roots, whose Galois group is
isomorphic to \A_5. If the jacobian of the hyperelliptic curve
admits real multiplication over the ground field from an order of
a real quadratic field , then either its endomorphism algebra is isomorphic
to , or and is a supersingular abelian variety. The
supersingular outcome cannot occur when splits in .Comment: Corrected typos; clarified proofs; added more examples in positive
characteristi
Artificial in its own right
Artificial Cells, , Artificial Ecologies, Artificial Intelligence, Bio-Inspired Hardware Systems, Computational Autopoiesis, Computational Biology, Computational Embryology, Computational Evolution, Morphogenesis, Cyborgization, Digital Evolution, Evolvable Hardware, Cyborgs, Mathematical Biology, Nanotechnology, Posthuman, Transhuman
Optimal Euclidean spanners: really short, thin and lanky
In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and
lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners
that achieves constant degree, diameter , and weight , and has running time . This construction
applies to -point constant-dimensional Euclidean spaces. Moreover, Arya et
al. conjectured that the weight bound can be improved by a logarithmic factor,
without increasing the degree and the diameter of the spanner, and within the
same running time.
This conjecture of Arya et al. became a central open problem in the area of
Euclidean spanners.
In this paper we resolve the long-standing conjecture of Arya et al. in the
affirmative. Specifically, we present a construction of spanners with the same
stretch, degree, diameter, and running time, as in Arya et al.'s result, but
with optimal weight .
Moreover, our result is more general in three ways. First, we demonstrate
that the conjecture holds true not only in constant-dimensional Euclidean
spaces, but also in doubling metrics. Second, we provide a general tradeoff
between the three involved parameters, which is tight in the entire range.
Third, we devise a transformation that decreases the lightness of spanners in
general metrics, while keeping all their other parameters in check. Our main
result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4,
201
On Efficient Distributed Construction of Near Optimal Routing Schemes
Given a distributed network represented by a weighted undirected graph
on vertices, and a parameter , we devise a distributed
algorithm that computes a routing scheme in
rounds, where is the hop-diameter of the network. The running time matches
the lower bound of rounds (which holds for any
scheme with polynomial stretch), up to lower order terms. The routing tables
are of size , the labels are of size , and
every packet is routed on a path suffering stretch at most . Our
construction nearly matches the state-of-the-art for routing schemes built in a
centralized sequential manner. The previous best algorithms for building
routing tables in a distributed small messages model were by \cite[STOC
2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but
suffers from substantially larger routing tables of size ,
while the latter has sub-optimal running time of
Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence
We study the {edge-coloring} problem in the message-passing model of
distributed computing. This is one of the most fundamental and well-studied
problems in this area. Currently, the best-known deterministic algorithms for
(2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01},
where Delta is the maximum degree of the input graph. Also, recent results of
\cite{BE10} for vertex-coloring imply that one can get an
O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an
O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an
arbitrarily small constant epsilon > 0.
In this paper we devise a drastically faster deterministic edge-coloring
algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in
O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 +
epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves
the previous state-of-the-art {exponentially} in a wide range of Delta,
specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In
addition, for small values of Delta our deterministic algorithm outperforms all
the existing {randomized} algorithms for this problem.
On our way to these results we study the {vertex-coloring} problem on the
family of graphs with bounded {neighborhood independence}. This is a large
family, which strictly includes line graphs of r-hypergraphs for any r = O(1),
and graphs of bounded growth. We devise a very fast deterministic algorithm for
vertex-coloring graphs with bounded neighborhood independence. This algorithm
directly gives rise to our edge-coloring algorithms, which apply to {general}
graphs.
Our main technical contribution is a subroutine that computes an
O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood
independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq
Delta
- β¦