9 research outputs found

    Efficient Detection of Attacks in SIP Based VoIP Networks Using Linear l1-SVM Classifier

    Get PDF
    The Session Initiation Protocol (SIP) is one of the most common protocols that are used for signaling function in Voice over IP (VoIP) networks. The SIP protocol is very popular because of its flexibility, simplicity, and easy implementation, so it is a target of many attacks. In this paper, we propose a new system to detect the Denial of Service (DoS) attacks (i.e. malformed message and invite flooding) and Spam over Internet Telephony (SPIT) attack in the SIP based VoIP networks using a linear Support Vector Machine with l1 regularization (i.e. l1-SVM) classifier. In our approach, we project the SIP messages into a very high dimensional space using string based n-gram features. Hence, a linear classifier is trained on the top of these features. Our experimental results show that the proposed system detects malformed message, invite flooding, and SPIT attacks with a high accuracy. In addition, the proposed system outperformed other systems significantly in the detection speed

    Survey of Countering DoS/DDoS Attacks on SIP Based VoIP Networks

    No full text
    Voice over IP (VoIP) services hold promise because of their offered features and low cost. Most VoIP networks depend on the Session Initiation Protocol (SIP) to handle signaling functions. The SIP is a text-based protocol that is vulnerable to many attacks. Denial of Service (DoS) and distributed denial of service (DDoS) attacks are the most harmful types of attacks, because they drain VoIP resources and render SIP service unavailable to legitimate users. In this paper, we present recently introduced approaches to detect DoS and DDoS attacks, and classify them based on various factors. We then analyze these approaches according to various characteristics; furthermore, we investigate the main strengths and weaknesses of these approaches. Finally, we provide some remarks for enhancing the surveyed approaches and highlight directions for future research to build effective detection solutions

    A hybrid approach for efficient anomaly detection using metaheuristic methods

    Get PDF
    Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms

    Countering DDoS Attacks in SIP Based VoIP Networks Using Recurrent Neural Networks

    No full text
    Many companies have transformed their telephone systems into Voice over IP (VoIP) systems. Although implementation is simple, VoIP is vulnerable to different types of attacks. The Session Initiation Protocol (SIP) is a widely used protocol for handling VoIP signaling functions. SIP is unprotected against attacks because it is a text-based protocol and lacks defense against the growing security threats. The Distributed Denial of Service (DDoS) attack is a harmful attack, because it drains resources, and prevents legitimate users from using the available services. In this paper, we formulate detection of DDoS attacks as a classification problem and propose an approach using token embedding to enhance extracted features from SIP messages. We discuss a deep learning model based on Recurrent Neural Networks (RNNs) developed to detect DDoS attacks with low and high-rate intensity. For validation, a balanced real traffic dataset was built containing three attack scenarios with different attack durations and intensities. Experiments show that the system has a high detection accuracy and low detection time. The detection accuracy was higher for low-rate attacks than that of traditional machine learning

    Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions

    No full text
    Breast cancer is the most diagnosed cancer among women around the world. The development of computer-aided diagnosis tools is essential to help pathologists to accurately interpret and discriminate between malignant and benign tumors. This paper proposes the development of an automated proliferative breast lesion diagnosis based on machine-learning algorithms. We used Tabu search to select the most significant features. The evaluation of the feature is based on the dependency degree of each attribute in the rough set. The categorization of reduced features was built using five machine-learning algorithms. The proposed models were applied to the BIDMC-MGH and Wisconsin Diagnostic Breast Cancer datasets. The performance measures of the used models were evaluated owing to five criteria. The top performing models were AdaBoost and logistic regression. Comparisons with others works prove the efficiency of the proposed method for superior diagnosis of breast cancer against the reviewed classification techniques

    A CNN Approach for Emotion Recognition via EEG

    No full text
    Emotion recognition via electroencephalography (EEG) has been gaining increasing attention in applications such as human–computer interaction, mental health assessment, and affective computing. However, it poses several challenges, primarily stemming from the complex and noisy nature of EEG signals. Commonly adopted strategies involve feature extraction and machine learning techniques, which often struggle to capture intricate emotional nuances and may require extensive handcrafted feature engineering. To address these limitations, we propose a novel approach utilizing convolutional neural networks (CNNs) for EEG emotion recognition. Unlike traditional methods, our CNN-based approach learns discriminative cues directly from raw EEG signals, bypassing the need for intricate feature engineering. This approach not only simplifies the preprocessing pipeline but also allows for the extraction of more informative features. We achieve state-of-the-art performance on benchmark emotion datasets, namely DEAP and SEED datasets, showcasing the superiority of our approach in capturing subtle emotional cues. In particular, accuracies of 96.32% and 92.54% were achieved on SEED and DEAP datasets, respectively. Further, our pipeline is robust against noise and artefact interference, enhancing its applicability in real-world scenarios

    An Efficient Method for Document Correction Based on Checkerboard Calibration Pattern

    No full text
    Portable digital devices such as PDAs and camera phones are the easiest and most widely used methods to preserve and collect information. Capturing a document image using this method always has warping issues, especially when capturing pages from a book and rolled-up documents. In this article, we propose an effective method to correct the warping of the captured document image. The proposed method uses a checkerboard calibration pattern to calculate the world and image points. A radial distortion algorithm is used to handle the warping problem based on the computed image and world points. The proposed method obtained an error rate of 3% using a document de-warping dataset (CBDAR 2007). The proposed method achieved a high level of quality compared with other previous methods. Our method fixes the problem of warping in document images acquired with different levels of complexity, such as poor lighting, low quality, and different layouts

    A Novel Binary Hybrid PSO-EO Algorithm for Cryptanalysis of Internal State of RC4 Cipher

    No full text
    Cryptography protects privacy and confidentiality. So, it is necessary to guarantee that the ciphers used are secure and cryptanalysis-resistant. In this paper, a new state recovery attack against the RC4 stream cipher is revealed. A plaintext attack is used in which the attacker has both the plaintext and the ciphertext, so they can calculate the keystream and reveal the cipher’s internal state. To increase the quality of answers to practical and recent real-world global optimization difficulties, researchers are increasingly combining two or more variations. PSO and EO are combined in a hybrid PSOEO in an uncertain environment. We may also convert this method to its binary form to cryptanalyze the internal state of the RC4 cipher. When solving the cryptanalysis issue with HBPSOEO, we discover that it is more accurate and quicker than utilizing both PSO and EO independently. Experiments reveal that our proposed fitness function, in combination with HBPSOEO, requires checking 104 possible internal states; however, brute force attacks require checking 2128 states
    corecore