12 research outputs found

    Early Reconstitution of Antibody Secreting Cells after Allogeneic Stem Cell Transplantation

    No full text
    Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels

    Somatic Reversion of a Novel <i>IL2RG</i> Mutation Resulting in Atypical X-Linked Combined Immunodeficiency

    No full text
    Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T−B+NK− phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vβ repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion

    Shared Cell Surface Marker Expression in Mesenchymal Stem Cells and Adult Sarcomas

    No full text
    Advanced adult soft-tissue sarcomas (STSs) are rare tumors with a dismal prognosis and limited systemic treatment options. STSs may originate from mesenchymal stem cells (MSCs); the latter have mainly been isolated from adult bone marrow as plastic-adherent cells with differentiation capacity into mesenchymal tissues. Recently, a panel of antibodies has been established that allows for the prospective isolation of primary MSCs with high selectivity. Similar to cancer stem cells in other malignancies, sarcoma stem cells may bear immunophenotypic similarity with the corresponding precursor, that is, MSCs. We therefore set out to establish the expression pattern of MSC markers in sarcoma cell lines and primary tumor samples by flow cytometry. In addition, fibroblasts from different sources were examined. The results document a significant amount of MSC markers shared by sarcoma cells. The expression pattern includes uniformly expressed markers, as well as MSC markers that only stained subpopulations of sarcoma cells. Expression of W5C5, W8B2 (tissue nonspecific alkaline phosphatase [TNAP]), CD344 (frizzled-4), and CD271 marked subpopulations displaying increased proliferation potential. Moreover, CD271+ cells displayed in vitro doxorubicin resistance and an increased capacity to form spheres under serum-free conditions. Interestingly, another set of antigens, including the bona fide progenitor cell markers CD117 and CD133, were not expressed. Comparative expression patterns of novel MSC markers in sarcoma cells, as well as fibroblasts and MSCs, are presented. Our data suggest a hierarchical cytoarchitecture of the most common adult type sarcomas and introduce W5C5, TNAP, CD344, and CD271 as potential sarcoma progenitor cell markers

    Establishment and Characterization of a Sclerosing Spindle Cell Rhabdomyosarcoma Cell Line with a Complex Genomic Profile

    No full text
    Sclerosing spindle cell rhabdomyosarcoma (SSRMS) is a rare rhabdomyosarcomas (RMS) subtype. Especially cases bearing a myogenic differentiation 1 (MYOD1) mutation are characterized by a high recurrence and metastasis rate, often leading to a fatal outcome. SSRMS cell lines are valuable in vitro models for studying disease mechanisms and for the preclinical evaluation of new therapeutic approaches. In this study, a cell line established from a primary SSRMS tumor of a 24-year-old female after multimodal chemotherapeutic pretreatment has been characterized in detail, including immunohistochemistry, growth characteristics, cytogenetic analysis, mutation analysis, evaluation of stem cell marker expression, differentiation potential, and tumorigenicity in mice. The cell line which was designated SRH exhibited a complex genomic profile, including several translocations and deletions. Array-comparative genomic hybridization (CGH) revealed an overall predominating loss of gene loci. The mesenchymal tumor origin was underlined by the expression of mesenchymal markers and potential to undergo adipogenic and osteogenic differentiation. Despite myogenic marker expression, terminal myogenic differentiation was inhibited, which might be elicited by the MYOD1 hotspot mutation. In vivo tumorigenicity could be confirmed after subcutaneous injection into NOD/SCID/&gamma;cnull mice. Summarized, the SRH cell line is the first adult SSRMS cell line available for preclinical research on this rare RMS subtype
    corecore