2 research outputs found

    Assessing trigeminal microstructure changes in patients with classical trigeminal neuralgia

    Get PDF
    Introduction. The crucial role of neuro-vascular conflict (NVC) in trigeminal neuralgia (TN) is getting increasingly challenged. Microstructural changes can be assessed using fractional anisotropy (FA) in diffusion tensor images (DTI). Objective. To evaluate usefulness of FA in brain MRI with DTI for TN lateralization assessment. Materials and methods. The study included 51 patients with classical TN divided into two groups: neurosurgical intervention free, post radiofrequency ablation (RFA), and a control group (patients without facial pain). All the patients were tested for NVC with FIESTA (Fast Imaging Employing Steady State Acquisition) brain MRI at 3Т. Difference in thickness of trigeminal roots on the intact and symptomatic sides was assessed for each group. The findings were compared to those in the control group. The MRI protocol was supplemented with DTI. The FA difference in thickness of the intact and symptomatic roots (∆FA) was calculated for each study group to assess microstructural root changes. The results were compared to those in the control group. Results. In trigeminal root DTIs, ∆FA over 0.075 [0.029; 0.146] is statistically significant to establish NVC-associated microstructural changes on the symptomatic side in patients without any past surgeries (p = 0,030). In patients with a history of trigeminal ganglion RFA, statistically significant (p = 0.026) thinned symptomatic trigeminal root (difference in thickness of trigeminal roots over 0.45 cm [0.4; 0.6]) was found as compared to that of the control patients. Conclusion. FA may be used as a quantitative demyelination biomarker in clinical TN. Trigeminal ganglion RFA leads to hypotrophy throughout the trigeminal nerve root

    The difference between cellulolytic 'culturomes' and microbiomes inhabiting two contrasting soil types.

    No full text
    High-throughput 16S rRNA sequencing was performed to compare the microbiomes inhabiting two contrasting soil types-sod-podzolic soil and chernozem-and the corresponding culturome communities of potentially cellulolytic bacteria cultured on standard Hutchinson media. For each soil type, soil-specific microorganisms have been identified: for sod-podzolic soil-Acidothermus, Devosia, Phenylobacterium and Tumebacillus, and for chernozem soil-Sphingomonas, Bacillus and Blastococcus. The dynamics of differences between soil types for bulk soil samples and culturomes varied depending on the taxonomic level of the corresponding phylotypes. At high taxonomic levels, the number of common taxa between soil types increased more slowly for bulk soil than for culturome. Differences between soil-specific phylotypes were detected in bulk soil at a low taxonomic level (genus, species). A total of 13 phylotypes were represented both in soil and in culturome. No relationship was shown between the abundance of these phylotypes in soil and culturome
    corecore