2 research outputs found

    Cytogenetic Effects in Patients after Computed Tomography Examination

    No full text
    Millions of people around the world are exposed to low doses of ionizing radiation from diagnostic computed tomography (CT) scans. Currently available data on the potential cancer risk after CT scans are contradictory and therefore demand further investigations. The aim of the current study was to obtain estimations of genome damage after CT scans in 42 non-cancer patients and to conduct a comparison of the results with 22 control subjects. The frequency of dicentric ring chromosomes and chromosome breaks was significantly increased in irradiated patients compared to the controls. The distribution of dicentrics among the cells demonstrated non-Poisson distribution that reflected non-uniform and partial-body radiation exposure. A fraction of patients followed Poisson distribution, which is typical for uniform whole-body exposures. Some patients demonstrated a level of dicentrics similar to the control subjects. The individual variations in the frequency and dicentric distribution suggested complex mechanisms of chromosome aberration induction and elimination that could be associated with individual radiosensitivity, as well as previous diagnostics that used ionizing radiation or the redistribution of small fractions of irradiated lymphocytes within the circulatory pull. In conclusion, CT scans may cause genome damage and possible increases in cancer risk. The introduction of a specific follow-up of such patients, especially in the case of repeated CT scans, is suggested
    corecore