2 research outputs found

    MM Algorithms for Minimizing Nonsmoothly Penalized Objective Functions

    Full text link
    In this paper, we propose a general class of algorithms for optimizing an extensive variety of nonsmoothly penalized objective functions that satisfy certain regularity conditions. The proposed framework utilizes the majorization-minimization (MM) algorithm as its core optimization engine. The resulting algorithms rely on iterated soft-thresholding, implemented componentwise, allowing for fast, stable updating that avoids the need for any high-dimensional matrix inversion. We establish a local convergence theory for this class of algorithms under weaker assumptions than previously considered in the statistical literature. We also demonstrate the exceptional effectiveness of new acceleration methods, originally proposed for the EM algorithm, in this class of problems. Simulation results and a microarray data example are provided to demonstrate the algorithm's capabilities and versatility.Comment: A revised version of this paper has been published in the Electronic Journal of Statistic
    corecore