109 research outputs found
Non-Hodgkin Lymphoma in Children and Adolescents: Progress Through Effective Collaboration, Current Knowledge, and Challenges Ahead
Non-Hodgkin lymphoma is the fourth most common malignancy in children, has an even higher incidence in adolescents, and is primarily represented by only a few histologic subtypes. Dramatic progress has been achieved, with survival rates exceeding 80%, in large part because of a better understanding of the biology of the different subtypes and national and international collaborations. Most patients with Burkitt lymphoma and diffuse large B-cell lymphoma are cured with short intensive pulse chemotherapy containing cyclophosphamide, cytarabine, and high-dose methotrexate. The benefit of the addition of rituximab has not been established except in the case of primary mediastinal B-cell lymphoma. Lymphoblastic lymphoma is treated with intensive, semi-continuous, longer leukemia-derived protocols. Relapses in B-cell and lymphoblastic lymphomas are rare and infrequently curable, even with intensive approaches. Event-free survival rates of approximately 75% have been achieved in anaplastic large-cell lymphomas with various regimens that generally include a short intensive B-like regimen. Immunity seems to play an important role in prognosis and needs further exploration to determine its therapeutic application. ALK inhibitor therapeutic approaches are currently under investigation. For all pediatric lymphomas, the intensity of induction/consolidation therapy correlates with acute toxicities, but because of low cumulative doses of anthracyclines and alkylating agents, minimal or no long-term toxicity is expected. Challenges that remain include defining the value of prognostic factors, such as early response on positron emission tomography/computed tomography and minimal disseminated and residual disease, using new biologic technologies to improve risk stratification, and developing innovative therapies, both in the first-line setting and for relapse
A New and Simple TRG Multiplex PCR Assay for Assessment of T-cell Clonality: A Comparative Study from the EuroClonality Consortium
T-cell Receptor Gamma (TRG) rearrangements are commonly used to detect clonal lymphoproliferations in hematopathology, since
they are rearranged in virtually all T lymphocytes and have a relatively limited recombinatorial repertoire, which reduces the risk of false
negative results, at the cost of potential false positivity. We developed an initial one-tube, 2-fluorochrome EuroClonality TRG PCR
multiplex (TRG-1T-2F) which was compared to the original 2-tube, 2-fluorochrome EuroClonality/BIOMED-2 TRG PCR (TRG-2T-2F)
and a commercial Invivoscribe one-tube, one-fluorochrome kit (IVS-1T-1F) on a series of 239 samples, including both T-cell
malignancies and reactive cases. This initial assay yielded discrepant results between the 10 participating EuroClonality laboratories
when using 2 fluorochromes, leading to adoption of a final single color EuroClonality strategy (TRG-1T-1F). Compared to TRG-2T-2F,
both TRG-1T-1F and IVS-1T-1F demonstrated easier interpretation and a lower risk of false positive from minor peaks in dispersed
repertoires. Both generate smaller fragments and as such are likely to be better adapted to analysis of formalin-fixed paraffinembedded (FFPE) tissue samples. Their differential performance was mainly explained by (i)
Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.This work was supported by Ministry of Health of the Czech Republic, grant no. 16-34272A; computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”. Analyses in Prague (JT, EF and MS) were supported by Ministry of Health, Czech Republic, grant no. 00064203, and by PRIMUS/17/MED/11. Analyses in the Monza (Centro Ricerca Tettamanti, SS, AG and GC) laboratory were supported by the Italian Association for Cancer Research (AIRC) and Comitato Maria Letizia Verga
\u27Struggling with Language\u27 : Indigenous movements for Linguistic Security and the Politics of Local Community
In this article, I explore the relationship between linguistic diversity and political power. Specifically, I outline some of the ways that linguistic diversity has served as a barrier to the centralization of power, thus constraining, for example, the political practice of empire-formation. A brief historical example of this dynamic is presented in the case of Spanish colonialism of the 16th-century. The article proceeds then to demonstrate how linguistic diversity remains tied to struggles against forms of domination. I argue that in contemporary indigenous movements for linguistic security, the languages themselves are not merely conceived of as the object of the political struggle, but also as the means to preserve a space for local action and deliberation – a ‘politics of local community’. I show that linguistic diversity and the devolution of political power to the local level are in a mutually reinforcing relationship. Finally, I consider the implications of this thesis for liberal theorizing on language rights, arguing that such theory cannot fully come to terms with this political-strategic dimension of language struggles
EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes
Most consensus leukemia lymphoma antibody panels consist of lists of markers based on expert opinions, but they have not been validated. Here we present the validated EuroFlow 8-color antibody panels for immunophenotyping of hematological malignancies. The single-tube screening panels and multi-tube classification panels fit into the EuroFlow diagnostic algorithm with entries defined by clinical and laboratory parameters. The panels were constructed in 2-7 sequential design-evaluation-redesign rounds, using novel Infinicyt software tools for multivariate data analysis. Two groups of markers are combined in each 8-color tube: (i) backbone markers to identify distinct cell populations in a sample, and (ii) markers for characterization of specific cell populations. In multi-tube panels, the backbone markers were optimally placed at the same fluorochrome position in every tube, to provide identical multidimensional localization of the target cell population(s). The characterization markers were positioned according to the diagnostic utility of the combined markers. Each proposed antibody combination was tested against reference databases of normal and malignant cells from healthy subjects and WHO-based disease entities, respectively. The EuroFlow studies resulted in validated and flexible 8-color antibody panels for multidimensional identification and characterization of normal and aberrant cells, optimally suited for immunophenotypic screening and classification of hematological malignancies
Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD
Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group
Improved clinical investigation and evaluation of high-risk medical devices: the rationale and objectives of CORE-MD (Coordinating Research and Evidence for Medical Devices)
: In the European Union (EU) the delivery of health services is a national responsibility but there are concerted actions between member states to protect public health. Approval of pharmaceutical products is the responsibility of the European Medicines Agency, whereas authorizing the placing on the market of medical devices is decentralized to independent 'conformity assessment' organizations called notified bodies. The first legal basis for an EU system of evaluating medical devices and approving their market access was the medical device directives, from the 1990s. Uncertainties about clinical evidence requirements, among other reasons, led to the EU Medical Device Regulation (2017/745) that has applied since May 2021. It provides general principles for clinical investigations but few methodological details-which challenges responsible authorities to set appropriate balances between regulation and innovation, pre- and post-market studies, and clinical trials and real-world evidence. Scientific experts should advise on methods and standards for assessing and approving new high-risk devices, and safety, efficacy, and transparency of evidence should be paramount. The European Commission recently awarded a Horizon 2020 grant to a consortium led by the European Society of Cardiology and the European Federation of National Associations of Orthopaedics and Traumatology, that will review methodologies of clinical investigations, advise on study designs, and develop recommendations for aggregating clinical data from registries and other real-world sources. The CORE-MD project (Coordinating Research and Evidence for Medical Devices) will run until March 2024; here we describe how it may contribute to the development of regulatory science in Europe
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.
Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
- …