4 research outputs found

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge

    No full text
    International audienceHydrothermal vent sulfide edifices contain some of the most extreme thermal and chemical conditions in which animals are able to live. As a result, sulfide edifices in the East Pacific Rise, Juan de Fuca Ridge, and Mid Atlantic Ridge vent systems often contain distinct faunal assemblages. In this study, we used high-resolution imagery and in-situ physico-chemical measurements within the context of a Geographic Information System (GIS) to examine community structure and niche differentiation of dominant fauna on sulfide edifices in the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) in the Western Pacific Ocean. Our results show that ELSC and VFR sulfide edifices host two distinct types of communities. One type, that covers the majority of sulfide edifice faces, is overall very similar to nearby lava communities and biomass is dominated by the same chemoautotrophic symbiont-containing molluscs that dominate lava communities, namely the provannid gastropods Alviniconcha spp. and Ifremeria nautilei and the mytilid bivalve Bathymodiolus brevior. The spatial distribution of the dominant molluscs is often a variation of the pattern of concentric rings observed on lavas, with Alviniconcha spp. at the tops of edifices where exposure to vent flow is the highest, and I. nautilei and B. brevior below. Our physico-chemical measurements indicate that because of rapid dispersion of vent fluid, habitable area for symbiont-containing fauna is quite limited on sulfide edifices, and the realized niches of the mollusc groups are narrower on sulfide edifices than on lavas. We suggest that competition plays an important role in determining the realized distributions of the mollusc groups on edifices. The other habitat, present in small patches of presumably hot, new anhydrite, is avoided by the dominant symbiont-containing molluscs and inhabited by crabs, shrimp and polynoids that are likely more heat tolerant. The ratio of sulfide concentration to temperature anomaly of vent fluids was significantly different between sulfide edifice sites and lava sites in the southern vent fields but not in the northern vent fields. We suggest that this is due to increased sulfide consumption by a large microbial consortium associated with the more friable andesitic lava substrates in the south

    Voltammetric (micro)electrodes for the in situ study of Fe2+ oxidation kinetics in hot springs and S2O32- production at hydrothermal vents

    No full text
    We have used solid-state Au/Hg voltammetric electrodes to understand redox and biogeochemical processes in hot spring and deep sea hydrothermal environments. These electrodes are non-specific and have the capability of measuring simultaneously a suite of chemical species including several of the principal redox species involved in early diagenesis (O-2, Mn2+, Fe2+, H2S/HS-, and I-) as well as some Fe species (FeS and Fe3+) and sulfur species (S-x(2-) and S2O32-). Here we demonstrate how in situ data obtained in complex environments can be used to study specific iron and sulfur reactions and processes at (sub)millimeter to centimeter resolution and over short time scales. Examples include the oxidation of Fe2+ by O-2 produced by cyanobacterial mats in Yellowstone National Park hot springs and the formation of S2O32- in diffuse flow waters from the hydrothermal vents at Lau Basin. In one example, profiles of redox species in cyanobacterial mats from Yellowstone National Park hot springs show that in the light dissolved Fe2+ is completely removed from the source waters as cyanobacterial mats produce O-2 and oxidize the Fe2+. Performing kinetic experiments in the dark and light at the depth of maximum O-2 production indicates that the decay of Fe2+ follows a zero order rate law consistent with photosynthesis as the source of 0, These dynamic environments show how kinetic data can be obtained in situ and be used to understand the interactions between biology and chemistry. We know of no other analytical technique that can provide this information in both clear and turbid waters on the time scales (seconds) observed
    corecore