146 research outputs found
Recommended from our members
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations
The devil is in the detail - a multifactorial intervention to reduce blood pressure in co-existing diabetes and chronic kidney disease: a single blind, randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>About 30-60% of individuals are non-adherent to their prescribed medications and this risk increases as the number of prescribed medications increases. This paper outlines the development of a consumer-centred <it>Me</it>dicine <it>S</it>elf-<it>M</it>anagement <it>I</it>ntervention (MESMI), designed to improve blood pressure control and medication adherence in consumers with diabetes and chronic kidney disease recruited from specialist outpatients' clinics.</p> <p>Methods</p> <p>We developed a multifactorial intervention consisting of Self Blood Pressure Monitoring (SBPM), medication review, a twenty-minute interactive Digital Versatile Disc (DVD), and follow-up support telephone calls to help consumers improve their blood pressure control and take their medications as prescribed. The intervention is novel in that it has been developed from analysis of consumer and health professional views, and includes consumer video exemplars in the DVD. The primary outcome measure was a drop of 3-6 mmHg systolic blood pressure at three months after completion of the intervention. Secondary outcome measures included: assessment of medication adherence, medication self-efficacy and general wellbeing. Consumers' adherence to their prescribed medications was measured by manual pill count, self-report of medication adherence, and surrogate biochemical markers of disease control.</p> <p>Discussion</p> <p>The management of complex health problems is an increasing component of health care practice, and requires interventions that improve patient outcomes. We describe the preparatory work and baseline data of a single blind, randomized controlled trial involving consumers requiring cross-specialty care with a follow-up period extending to 12 months post-baseline.</p> <p>Trial Registration</p> <p>The trial was registered with the Australian and New Zealand Clinical Trials Register (ACTRN12607000044426).</p
A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly
Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes. An Individual-Participant Data Meta-Analysis
IMPORTANCE: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. OBJECTIVE: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. DESIGN, SETTING, AND PARTICIPANTS: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. EXPOSURES: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). MAIN OUTCOMES AND MEASURES: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. RESULTS: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations
Plant ecology meets animal cognition: impacts of animal memory on seed dispersal
We propose that an understanding of animal learning and memory is critical to predicting the impacts of animals on plant populations through
processes such as seed dispersal, pollination and herbivory. Focussing on endozoochory, we review the evidence that animal memory plays a role in seed
dispersal, and present a model which allows us to explore the fundamental consequences of memory for this process. We demonstrate that decision-making by animals based on their previous experiences has the potential to determine which plants are visited, which fruits are selected to be eaten from the plant and where seeds are subsequently deposited, as well as being an important determinant of animal survival. Collectively, these results suggest that the impact of animal learning and memory on seed dispersal is likely to be extremely important, although to date our understanding of these processes suffers from a conspicuous lack of empirical support. This is partly because of the difficulty of conducting appropriate experiments but is
also the result of limited interaction between plant ecologists and those who work on animal cognition
Genome-wide association and functional follow-up reveals new loci for kidney function
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD
Development of Risk Prediction Equations for Incident Chronic Kidney Disease
IMPORTANCE ‐ Early identification of individuals at elevated risk of developing chronic kidney disease
could improve clinical care through enhanced surveillance and better management of underlying health
conditions.
OBJECTIVE – To develop assessment tools to identify individuals at increased risk of chronic kidney
disease, defined by reduced estimated glomerular filtration rate (eGFR).
DESIGN, SETTING, AND PARTICIPANTS – Individual level data analysis of 34 multinational cohorts from
the CKD Prognosis Consortium including 5,222,711 individuals from 28 countries. Data were collected from April, 1970 through January, 2017. A two‐stage analysis was performed, with each study first
analyzed individually and summarized overall using a weighted average. Since clinical variables were often differentially available by diabetes status, models were developed separately within participants
with diabetes and without diabetes. Discrimination and calibration were also tested in 9 external
cohorts (N=2,253,540).
EXPOSURE Demographic and clinical factors.
MAIN OUTCOMES AND MEASURES – Incident eGFR <60 ml/min/1.73 m2.
RESULTS – In 4,441,084 participants without diabetes (mean age, 54 years, 38% female), there were
660,856 incident cases of reduced eGFR during a mean follow‐up of 4.2 years. In 781,627 participants
with diabetes (mean age, 62 years, 13% female), there were 313,646 incident cases during a mean
follow‐up of 3.9 years. Equations for the 5‐year risk of reduced eGFR included age, sex, ethnicity, eGFR,
history of cardiovascular disease, ever smoker, hypertension, BMI, and albuminuria. For participants
with diabetes, the models also included diabetes medications, hemoglobin A1c, and the interaction
between the two. The risk equations had a median C statistic for the 5‐year predicted probability of
0.845 (25th – 75th percentile, 0.789‐0.890) in the cohorts without diabetes and 0.801 (25th – 75th
percentile, 0.750‐0.819) in the cohorts with diabetes. Calibration analysis showed that 9 out of 13 (69%)
study populations had a slope of observed to predicted risk between 0.80 and 1.25. Discrimination was
similar in 18 study populations in 9 external validation cohorts; calibration showed that 16 out of 18
(89%) had a slope of observed to predicted risk between 0.80 and 1.25.
CONCLUSIONS AND RELEVANCE – Equations for predicting risk of incident chronic kidney disease
developed in over 5 million people from 34 multinational cohorts demonstrated high discrimination and
variable calibration in diverse populations
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07
- …