12 research outputs found

    Measuring free radicals with relaxometry:Pioneering steps for measurements in human semen

    Get PDF
    A possible biological mechanism for unexplained male infertility is due to the effect of oxidative stress (OS), defined by the imbalance of reactive oxygen species (ROS) production, and the capacity of the antioxidant defence system to counteract it. In physiological concentrations, ROS and especially free radicals play an essential role in sperm maturation and fertilization, while an overabundance could lead to OS-induced damage to spermatozoa. To date, there are no direct detection techniques available that can measure the total amount of free radicals real time and identify where and when free radicals are generated. This study applies a quantum sensing technique using fluorescent nanodiamonds (FNDs), called T1 relaxometry, which is uniquely sensitive and specific for free radicals allowing measurements of the current radical load for nanoscale detection in living cells and body fluids. This proof-of-principle study investigates if we can use this technique to detect the free radical generation in human whole and separated, using density gradient centrifugation, semen. This method could be potentially used as new diagnostic measure for unexplained infertility or to track the effect of therapeutic interventions such as lifestyle changes. We adapted the existing relaxometry technique to measure free radicals in semen. The measured relaxation time (T1 time) was correlated to sperm concentration and progressive motility. Additionally, we explored the influence of the oxidative trigger hydrogen peroxide and the antioxidant glutathione on the free radical concentration measured. No significant correlations were found, which indicates that measurements in more proximity of the sperm cell are required to use relaxometry as a potential diagnostic tool for unexplained male infertility

    Local and Systemic Oxidative Stress Biomarkers for Male Infertility: The ORION Study

    Get PDF
    Infertility problems occur in around 10% of all couples worldwide, with male-factor infertility as the sole contributor in 20–30% of these cases. Oxidative stress (OS) is suggested to be associated with the pathophysiology of male infertility. In spermatozoa, OS can lead to damage to the cell membrane, resulting in disruption of DNA integrity and a decrease in motility. Established biomarkers for OS include free thiols and malondialdehyde (MDA), both representing different components of the reactive species interactome (RSI). This exploratory study aimed to investigate seminal plasma-free thiol and MDA levels in relation to semen parameters as defined by the World Health Organization (WHO) to determine if these markers are adequate to define local OS status. Furthermore, this study investigated if there is a relation between systemic and local OS status by comparing seminal concentrations of free thiol (R-SH, sulfhydryl groups, representing the extracellular redox status) and MDA (lipid peroxidation product) levels to those measured in serum. Free thiol and MDA measurements in both serum and semen plasma were performed in 50 males (18–55 y) of couples seeking fertility treatment. A significant positive correlation was found between seminal plasma-free thiol levels and sperm concentration and progressive motility (r = 0.383, p = 0.008 and r = 0.333, p = 0.022, respectively). In addition, a significant positive correlation was found between MDA levels in seminal plasma and sperm concentration (r = 0.314, p = 0.031). This study supports that seminal plasma-free thiols may be promising as local OS biomarkers. No associations were observed between local and systemic OS biomarker concentrations

    The risk of TESE-induced hypogonadism: A systematic review and meta-analysis

    No full text
    BACKGROUND: Testicular sperm extraction (TESE) is a surgical procedure to retrieve spermatozoa from the testes of men with azoospermia to help them achieve biological parenthood. Although effective, the surgical procedure is not without complications and haematoma, devascularization, inflammation and a decrease in testosterone levels have been described as such. The prevalence and duration of hypogonadism and associated symptoms after TESE have not been studied systematically. OBJECTIVE AND RATIONALE: In this systematic review we addressed the following research questions: Are serum testosterone levels decreased after TESE and, if so, do these levels recover over time? What is the prevalence of symptoms and signs related to hypogonadism after TESE and are they related to testosterone levels? SEARCH METHODS: We searched the databases Pubmed and Embase from 1 January 1993 to 26 June 2017.We combined subject headings with terms in title and/or abstract for participants, intervention and outcomes. We included all studies that reported on TESE, regardless of the specific technique used, that measured testosterone and/or LH, and/or had information on signs or symptoms related to hypogonadism as defined by hypogonadism guidelines. An additional inclusion criterion was that studies described these measurements both before and after TESE. The quality of the included studies was assessed using the Risk Of Bias In Non-randomized Studies-of Interventions tool. OUTCOMES: We identified 15 studies reporting on total testosterone levels of which five studies also reported on testicular volume and one study on erectile dysfunction. Men with Klinefelter syndrome and men with non-obstructive azoospermia had the strongest decrease in total testosterone levels 6 months after TESE, with a mean decrease of 4.1 and 2.7 nmol/l, respectively, which recovered again to baseline levels 26 and 18 months after TESE, respectively. At 6 months after TESE, some studies reported serum total testosterone concentrations below a cut-off value of 12 nmol/l, where symptoms and signs related to hypogonadism may appear. Furthermore, an increased prevalence of erectile dysfunction related to decreased total testosterone levels 6 months after TESE was reported. Also, in some men a decrease in testicular volume was reported. However, it is not clear if this is related to low testosterone levels. WIDER IMPLICATIONS: The transient, but statistically significant, decrease in total testosterone levels indicates that men are at risk of developing a temporary hypogonadism after TESE, but there is insufficient evidence for whether patients actually experience clinical symptoms in case of decreased serum testosterone levels. To be able to properly counsel TESE patients, more large-scale monitoring on signs and symptoms of hypogonadism, in combination with testosterone measurements, needs to be performed in men undergoing TESE

    In Vitro Meiosis of Male Germline Stem Cells

    No full text
    In this article, Hamer and colleagues show that, on a feeder layer of Sertoli cells, mouse spermatogonial stem cells can be induced to undergo meiosis in vitro. However, meiotic recombination and checkpoints do not necessarily function properly in vitro, and the authors warn that in vitro-generated spermatid-like cells should be thoroughly analyzed before clinical application can be considered

    Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat

    No full text
    Kisspeptin (Kp) and (Arg)(Phe) related peptide 3 (RFRP-3) are two RF-amides acting in the hypothalamus to control reproduction. In the past 10 years, it has become clear that, apart from their role in reproductive physiology, both neuropeptides are also involved in the control of food intake, as well as glucose and energy metabolism. To investigate further the neural mechanisms responsible for these metabolic actions, we assessed the effect of acute i.c.v. administration of Kp or RFRP-3 in ad lib. fed male Wistar rats on feeding behaviour, glucose and energy metabolism, circulating hormones (luteinising hormone, testosterone, insulin and corticosterone) and hypothalamic neuronal activity. Kp increased plasma testosterone levels, had an anorexigenic effect and increased lipid catabolism, as attested by a decreased respiratory exchange ratio (RER). RFRP-3 also increased plasma testosterone levels but did not modify food intake or energy metabolism. Both RF-amides increased endogenous glucose production, yet with no change in plasma glucose levels, suggesting that these peptides provoke not only a release of hepatic glucose, but also a change in glucose utilisation. Finally, plasma insulin and corticosterone levels did not change after the RF-amide treatment. The Kp effects were associated with an increased c-Fos expression in the median preoptic area and a reduction in pro-opiomelanocortin immunostaining in the arcuate nucleus. No effects on neuronal activation were found for RFRP-3. Our results provide further evidence that Kp is not only a very potent hypothalamic activator of reproduction, but also part of the hypothalamic circuit controlling energy metabolism

    Local and Systemic Oxidative Stress Biomarkers for Male Infertility: The ORION Study

    No full text
    Infertility problems occur in around 10% of all couples worldwide, with male-factor infertility as the sole contributor in 20–30% of these cases. Oxidative stress (OS) is suggested to be associated with the pathophysiology of male infertility. In spermatozoa, OS can lead to damage to the cell membrane, resulting in disruption of DNA integrity and a decrease in motility. Established biomarkers for OS include free thiols and malondialdehyde (MDA), both representing different components of the reactive species interactome (RSI). This exploratory study aimed to investigate seminal plasma-free thiol and MDA levels in relation to semen parameters as defined by the World Health Organization (WHO) to determine if these markers are adequate to define local OS status. Furthermore, this study investigated if there is a relation between systemic and local OS status by comparing seminal concentrations of free thiol (R-SH, sulfhydryl groups, representing the extracellular redox status) and MDA (lipid peroxidation product) levels to those measured in serum. Free thiol and MDA measurements in both serum and semen plasma were performed in 50 males (18–55 y) of couples seeking fertility treatment. A significant positive correlation was found between seminal plasma-free thiol levels and sperm concentration and progressive motility (r = 0.383, p = 0.008 and r = 0.333, p = 0.022, respectively). In addition, a significant positive correlation was found between MDA levels in seminal plasma and sperm concentration (r = 0.314, p = 0.031). This study supports that seminal plasma-free thiols may be promising as local OS biomarkers. No associations were observed between local and systemic OS biomarker concentrations

    A comparative analysis of human adult testicular cells expressing stem Leydig cell markers in the interstitium, vasculature, and peritubular layer

    No full text
    Background: Origin of human adult Leydig cells (ALCs) is not well understood. This might be partly due to limited data available on the identification and location of human precursor and stem Leydig cells (SLCs) which hampers the study on the development of ALCs. Objectives: The aim of the present study was to investigate whether described human (PDGFRα, NGFR) and rodent (NES, PDGFRα, THY1, NR2F2) SLC markers are expressed by a common cell population within human adult testicular interstitial cells in vivo and before and after in vitro propagation. Materials and methods: Immunohistochemical analyses were used to identify localization of human adult testicular interstitial cells expressing described SLC markers. Next, interstitial cells were isolated and cultured. The percentage of cells expressing one or more SLC markers was determined before and after culture using flow cytometry. Results: NR2F2 and PDGFRα were present in peritubular, perivascular, and Leydig cells, while THY1 was expressed in peritubular and perivascular cells. Although NES and NGFR were expressed in endothelial cells, co-localization with PDGFRα was found for both in vitro, although for NGFR only after culture. All marker positive cells were able to undergo propagation in vitro. Discussion: The partly overlap in localization and overlap in expression in human testicular cells indicate that PDGFRα, NR2F2, and THY1 are expressed within the same ALC developmental lineage from SLCs. Based on the in vitro results, this is also true for NES and after in vitro propagation for NGFR. Conclusion: Our results that earlier described SLC markers are expressed in overlapping human interstitial cell population opens up further research strategies aiming for a better insight in the Leydig cell lineage and will be helpful for development of strategies to cure ALC dysfunction

    A comparative analysis of human adult testicular cells expressing stem Leydig cell markers in the interstitium, vasculature, and peritubular layer

    No full text
    Background: Origin of human adult Leydig cells (ALCs) is not well understood. This might be partly due to limited data available on the identification and location of human precursor and stem Leydig cells (SLCs) which hampers the study on the development of ALCs. Objectives: The aim of the present study was to investigate whether described human (PDGFRα, NGFR) and rodent (NES, PDGFRα, THY1, NR2F2) SLC markers are expressed by a common cell population within human adult testicular interstitial cells in vivo and before and after in vitro propagation. Materials and methods: Immunohistochemical analyses were used to identify localization of human adult testicular interstitial cells expressing described SLC markers. Next, interstitial cells were isolated and cultured. The percentage of cells expressing one or more SLC markers was determined before and after culture using flow cytometry. Results: NR2F2 and PDGFRα were present in peritubular, perivascular, and Leydig cells, while THY1 was expressed in peritubular and perivascular cells. Although NES and NGFR were expressed in endothelial cells, co-localization with PDGFRα was found for both in vitro, although for NGFR only after culture. All marker positive cells were able to undergo propagation in vitro. Discussion: The partly overlap in localization and overlap in expression in human testicular cells indicate that PDGFRα, NR2F2, and THY1 are expressed within the same ALC developmental lineage from SLCs. Based on the in vitro results, this is also true for NES and after in vitro propagation for NGFR. Conclusion: Our results that earlier described SLC markers are expressed in overlapping human interstitial cell population opens up further research strategies aiming for a better insight in the Leydig cell lineage and will be helpful for development of strategies to cure ALC dysfunction.</p

    The risk of hypogonadism after testicular sperm extraction in men with various types of azoospermia: a prospective cohort study

    No full text
    Research question: What is the risk of hypogonadism in men with obstructive azoospermia, non-obstructive azoospermia (NOA) or Klinefelter syndrome after testicular sperm extraction (TESE)? Design: This prospective longitudinal cohort study was carried out between 2007 and 2015. Results: Around 36% of men with Klinefelter syndrome, 4% of men with obstructive azoospermia and 3% of men with NOA needed testosterone replacement therapy (TRT). Klinefelter syndrome was strongly associated with TRT while no association was found between obstructive azoospermia or NOA and TRT. Irrespective of the pre-operative diagnosis, a higher testosterone concentration before TESE was associated with a lower chance of needing TRT. Conclusions: Men with obstructive azoospermia or NOA have a similar moderate risk of clinical hypogonadism after TESE, while this risk is much larger for men with Klinefelter syndrome. The risk of clinical hypogonadism is lower when testosterone concentrations are high before TESE

    Spermatogonial Stem Cell-Based Therapies: Taking Preclinical Research to the Next Level

    No full text
    Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future
    corecore