2 research outputs found

    NSAIDs Determination in Human Serum by GC-MS

    No full text
    Non-steroidal anti-inflammatory drugs (NSAIDs) are being widely consumed without medical prescription and are often the cause of intoxication, usually in young children. For this, there is a special need in their determination in routine toxicology analysis. As screening methods mainly focus on drugs of abuse (DOA) that are alkaline compounds in their majority, they are not optimized for acidic drugs, such as NSAIDs. Thus, more specific methods are needed for the detection and quantification of this class of drugs. In this study, the efficient extraction of NSAIDs from blood serum and their accurate determination is studied. Optimum pH extraction conditions were studied and thereafter different derivatization procedures for their detection. From the derivatization reagents used, N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% Trimethylchlorosilane (TMCS) was found to be the optimum choice for the majority of the examined NSAIDs; pH of 3.7 was selected as the most efficient for the extraction step. Herein the formation of the lactam of diclofenac was also thoroughly investigated. The developed Gas Chromatography-Mass Spectrometry (GC-MS) method had a run time of 15 min with the mass spectrometer operating in Electron Impact (EI) within the mass range of 40 to 500 amu. The method was linear with R2 above 0.991 and limits of quantitation (LOQ) ranging from 6 to 414 ng/mL. The intra-day accuracy and precision were found between 1.03%–9.79% and 88%–110%, respectively, and the inter-day accuracy and precision were between 1.87%–10.79% and 91%–113%. The optimum protocol was successfully applied to real clinical samples, where intoxication of NSAIDs was suspected

    Sample Preparation Strategies for the Effective Quantitation of Hydrophilic Metabolites in Serum by Multi-Targeted HILIC-MS/MS

    No full text
    The effect of endogenous interferences of serum in multi-targeted metabolite profiling HILIC-MS/MS analysis was investigated by studying different sample preparation procedures. A modified QuEChERS dispersive SPE protocol, a HybridSPE protocol, and a combination of liquid extraction with protein precipitation were compared to a simple protein precipitation. Evaluation of extraction efficiency and sample clean-up was performed for all methods. SPE sorbent materials tested were found to retain hydrophilic analytes together with endogenous interferences, thus additional elution steps were needed. Liquid extraction was not shown to minimise matrix effects. In general, it was observed that a balance should be reached in terms of recovery, efficient clean-up, and sample treatment time when a wide range of metabolites are analysed. A quick step for removing phospholipids prior to the determination of hydrophilic endogenous metabolites is required, however, based on the results from the applied methods, further studies are needed to achieve high recoveries for all metabolites
    corecore