1 research outputs found
The Extent of Platinum-Induced Hydrogen Spillover on Cerium Dioxide
Hydrogen spillover from metal nanoparticles to oxides
is an essential
process in hydrogenation catalysis and other applications such as
hydrogen storage. It is important to understand how far this process
is reaching over the surface of the oxide. Here, we present a combination
of advanced sample fabrication of a model system and in situ X-ray
photoelectron spectroscopy to disentangle local and far-reaching effects
of hydrogen spillover in a platinum–ceria catalyst. At low
temperatures (25–100 °C and 1 mbar H2) surface
O–H formed by hydrogen spillover on the whole ceria surface
extending microns away from the platinum, leading to a reduction of
Ce4+ to Ce3+. This process and structures were
strongly temperature dependent. At temperatures above 150 °C
(at 1 mbar H2), O–H partially disappeared from the
surface due to its decreasing thermodynamic stability. This resulted
in a ceria reoxidation. Higher hydrogen pressures are likely to shift
these transition temperatures upward due to the increasing chemical
potential. The findings reveal that on a catalyst containing a structure
capable to promote spillover, hydrogen can affect the whole catalyst
surface and be involved in catalysis and restructuring