14 research outputs found

    EFFECTS OF ADDING LANTHANUM TO Ni/ZrO2 CATALYSTS ON ETHANOL STEAM REFORMING

    Get PDF
    EFFECTS OF ADDING LANTHANUM TO Ni/ZrO2 CATALYSTS ON ETHANOL STEAM REFORMING. The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting; with the support, due to the higher dispersion effect. The best catalytic performance at 450 degrees C was found for the Ni/2LZ catalyst, which exhibited an effluent gaseous mixture with the highest H-2 yield

    Catalisadores Ni/Al2O3 promovidos com molibdênio para a reação de reforma a vapor de metano Mo-Ni/AL2O3 catalysts for the methane steam reforming reaction

    No full text
    <abstract language="eng">Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0

    Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions

    No full text
    Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.Brazilian Federal Research Funding Council (FINEP)Financiadora de Estudos e Projetos (FINEP)CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESPCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPE

    Hydrogen purification for fuel cell using CuO/CeO(2)-Al(2)O(3) catalyst

    No full text
    CuO/CeO(2), CuO/Al(2)O(3) and CuO/CeO(2)-Al(2)O(3) catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu(0) is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al(2)O(3) or CuO/CeO(2)-Al(2)O(3) catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO(2) despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance. (C) 2010 Elsevier B.V. All rights reserved.CapesCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Ni catalyst on mixed support of CeO2-ZrO2 and Al2O3: Effect of composition of CeO2-ZrO2 solid solution on the methane steam reforming reaction

    No full text
    In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.CNP

    Study of CuO/CeO2 catalyst with for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO)

    No full text
    The CuO/CeO2 system was investigated as a catalyst for preferential CO oxidation reaction in hydrogen-rich feed (PROX-CO). The catalysts were prepared by deposition-precipitation (DEP) and co-precipitation (COP) methods and the catalytic performance reveals that the preparation method influences the properties of solids prepared, where a direct consequence is the difference in behavior of the catalysts in the PROX-CO reaction. A high specific area and a better dispersion of the metallic phase were obtained in the catalyst prepared by co-precipitation. The redox properties during the reaction were reported by measures of temperature programmed reduction (TPR), OSC measurements and X-ray absorption near edge structure (XANES-TPR) in situ showed the relationship between the preparation method, the physicochemical characteristics and redox properties in the PROX-CO reaction. By this means, the good dispersion of CuO and the best oxygen capacity are the response of the high performance of CuO/CeO2-COP catalysts for the PROX-CO reaction. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved

    International Journal of Hydrogen Energy

    No full text
    Texto completo: acesso restrito. p. 3213–3224The effect of support on the properties of rhodium and cobalt-based catalysts for ethanol steam reforming was studied in this work, by comparing the use of magnesia, alumina and Mg–Al oxide (obtained from hydrotalcite) as supports. It was found that metallic rhodium particles with around 2.4–2.6 nm were formed on all supports, but Mg–Al oxide led to the narrowest particles size distribution; cobalt was supposed to be located on the support, affecting its acidity. Rhodium interacts strongly with the support in the order: alumina> Mg–Al oxide > magnesia. The magnesium-containing catalysts showed low ethene selectivity and high hydrogen selectivity while the alumina-based ones showed high ethene selectivity, assigned to the Lewis sites of alumina. The Mg–Al oxide-supported rhodium and cobalt catalyst was the most promising sample to produce hydrogen by ethanol reforming, showing the highest hydrogen yield, low ethene selectivity and high specific surface area during reaction

    Catalytic oxidation of n-hexane promoted by Ce1-xCuxO2 catalysts prepared by one-step polymeric precursor method

    No full text
    Ceria-supported copper catalysts (Ce1-xCuxO2, with x (mol) = 0, 0.01, 0.03, 0.05 and 0.10) were prepared in one step through the polymeric precursor method. The textural properties of the catalysts were investigated by X-ray diffraction (XRD), Rietveld refinement, N2-physisorption (BET surface area), electron paramagnetic resonance (EPR), UVevisible diffuse reflectance and photoluminescence spectroscopies and temperature-programmed reduction (TPR). In a previous study ceria-supported copper catalysts were found to be efficient in the preferential oxidation of CO. In this study, we extended the catalytic application of Ce1-xCuxO2 systems to n-hexane oxidation and it was verified that the catalysts were highly efficient in the proposed reaction. The best performance (up to 95% conversion) was observed for the catalysts with low copper loads (Ce0.97Cu0.03O2 and Ce0.99Cu0.01O2, respectively). The physicochemical characterizations revealed that these behaviors could be attributed to the copper species present in the catalysts and the interaction between CuO and CeO2, which vary according to the copper content.FAPESPFAPEMIGCAPESCNP
    corecore