3 research outputs found

    The Influence of Processing Time on Morphology, Structure and Functional Properties of PEO Coatings on AZ63 Magnesium Alloy

    No full text
    The plasma electrolytic oxidation (PEO) surface modification technique was employed for improving the mechanical and anti-corrosion properties of the AZ63 magnesium alloy. Different PEO processing times (5, 10 and 20 min) in a 10 g/L NaAlO2 electrolyte, with no other additives, led to the formation of ceramic coatings with mean thicknesses between 15 and 37 microns. Scanning electron microscopy (SEM) showed that the porosity of the coatings decreased with processing time, but an increase in roughness was observed. X-Ray diffraction phase analysis indicated a coating structure composed of majority magnesium aluminate spinel. The corrosion rate of the coated samples decreased with an order of magnitude compared with the bare alloy. The average micro-hardness values of the PEO-coated samples was up to five times higher than those of the AZ63 alloy

    The Influence of Processing Time on Morphology, Structure and Functional Properties of PEO Coatings on AZ63 Magnesium Alloy

    No full text
    The plasma electrolytic oxidation (PEO) surface modification technique was employed for improving the mechanical and anti-corrosion properties of the AZ63 magnesium alloy. Different PEO processing times (5, 10 and 20 min) in a 10 g/L NaAlO2 electrolyte, with no other additives, led to the formation of ceramic coatings with mean thicknesses between 15 and 37 microns. Scanning electron microscopy (SEM) showed that the porosity of the coatings decreased with processing time, but an increase in roughness was observed. X-Ray diffraction phase analysis indicated a coating structure composed of majority magnesium aluminate spinel. The corrosion rate of the coated samples decreased with an order of magnitude compared with the bare alloy. The average micro-hardness values of the PEO-coated samples was up to five times higher than those of the AZ63 alloy

    Aluminum Oxide Ceramic Coatings on 316l Austenitic Steel Obtained by Plasma Electrolysis Oxidation Using a Pulsed Unipolar Power Supply

    No full text
    AISI 316 steel has good corrosion behavior and high-temperature stability, but often prolonged exposure to temperatures close to 700 °C in aggressive environments (e.g., in boilers and furnaces, in nuclear installations) can cause problems that lead to accelerated corrosion degradation of steel components. A known solution is to prepare alumina ceramic coatings on the surface of stainless steel. The aim of this study is to obtain aluminum oxide ceramic coatings on 316L austenitic steel, by Plasma Electrolysis Oxidation (PEO), using a pulsed unipolar power supply. The structures obtained by PEO under various experimental conditions were characterized by XPS, SEM, XRD, and EDS analyses. The feasibility was proved of employing PEO in NaAlO2 aqueous solution using a pulsed unipolar power supply for ceramic–like aluminum oxide films preparation, with thicknesses in the range of 20–50 μm, and a high content of Al2O3 on the surface of austenitic stainless steels
    corecore