5 research outputs found
Nonspecific Cation Current Associated with Native Polycystin-2 in HEK-293 Cells
Mutations in either PKD1 or PKD2 gene are associated with autosomal dominant polycystic kidney disease, the most common inherited kidney disorder. Polycystin-2 (PC2), the PKD2 gene product, and the related protein polycystin-L, function as Ca2+-permeable, nonselective cation channels in different expression systems. This work describes a nonspecific cation current (ICC) that is present in native HEK-293 cells and highly associated with a PC2-channel activity. The current is voltage dependent, activating for potentials that are positive to –50 mV and inactivating in a few milliseconds. It is sensitive to Cd2+, Gd3+, La3+, SKF96365, and amiloride. After silencing of PC2 by RNA interfering, cells show a reduced current that is restored by transfection with normal but not truncated PC2. Consistently, ICC is abolished by perfusion with an anti-PC2 antibody. Furthermore, heterologous expression of the PC1 cytoplasmic tail significantly increases ICC peak amplitude compared with native cells. This is the first characterization of such a current in HEK-293 cells, a widely used expression system for ion channels. These cells, therefore, could be regarded as a suitable and readily accessible tool to study interactions between native PC2/PC1 complex and other membrane proteins, thus contributing to the understanding of autosomal dominant polycystic kidney disease pathogenesis
Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells
Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores