6 research outputs found

    Short-term exposure to air pollution and incidence of stroke in the Women's Health Initiative

    Get PDF
    Background: Evidence of the association between daily variation in air pollution and risk of stroke is inconsistent, potentially due to the heterogeneity in stroke etiology. Objectives: To estimate the associations between daily variation in ambient air pollution and risk of stroke and its subtypes among participants of the Women's Health Initiative, a large prospective cohort study in the United States. Methods: We used national-scale, log-normal ordinary kriging models to estimate daily concentrations of fine particulate matter (PM2.5), respirable particulate matter (PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulphur dioxide, and ozone at participant addresses. Stroke was adjudicated by trained neurologists and classified as ischemic or hemorrhagic. Ischemic strokes were further classified according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) classification. We used a time-stratified case-crossover approach to estimate the odds ratio (OR) of the risk of stroke associated with an interquartile range (IQR) increase in concentrations of each air pollutant. We performed stratified analysis to examine whether associations varied across subgroups defined by age at stroke onset, US census region, smoking status, body mass index, and prior history of diabetes mellitus, hypertension, heart or circulation problems, or arterial fibrillation at enrollment. Results: Among 5417 confirmed strokes between 1993 and 2012, 4300 (79.4%) were classified as ischemic and 924 (17.1%) as hemorrhagic. No association was observed between day-to-day variation in any pollutant and risk of total stroke, ischemic stroke, or specific etiologies of ischemic stroke. We observed a positive association between risk of hemorrhagic stroke and NO2 and NOx in the 3 days prior to stroke with OR of 1.24 (95% CI: 1.01, 1.52) and 1.18 (95% CI: 1.03, 1.34) per IQR increase, respectively. The observed associations with hemorrhagic stroke were more pronounced among non-obese participants. Conclusions: In this large cohort of post-menopausal US women, daily NO2 and NOx were associated with higher risk of hemorrhagic stroke, but ambient levels of four other air pollutants were not associated with higher risk of total stroke, ischemic stroke, or ischemic stroke subtypes

    Long-term exposure to ambient particulate matter and stroke etiology: Results from the Women's Health Initiative

    Get PDF
    Background: Ambient particulate matter (PM) air pollution is a leading cause of global disability and accounts for an annual 2.9 million deaths globally. PM is established as an important risk factor for cardiovascular disease, however the evidence supporting a link specifically between long-term exposure to ambient PM and incident stroke is less clear. We sought to evaluate the association of long-term exposure to different size fractions of ambient PM with incident stroke (overall and by etiologic subtypes) and cerebrovascular deaths within the Women's Health Initiative, a large prospective study of older women in the US. Methods: We studied 155,410 postmenopausal women without previous cerebrovascular disease enrolled into the study between 1993 and 1998, with follow-up through 2010. We assessed geocoded participant address-specific concentrations of ambient PM (fine [PM2.5], respirable [PM10] and coarse [PM10-2.5]), as well as nitrogen dioxide [NO2] using spatiotemporal models. We classified hospitalization events into ischemic, hemorrhagic, or other/unclassified stroke. Cerebrovascular mortality was defined as death from any stroke etiology. We used Cox proportional hazard models to calculate hazard ratios (HR) and 95% confidence intervals (CI), adjusting for individual and neighborhood-level characteristics. Results: During a median follow-up time of 15 years, participants experienced 4,556 cerebrovascular events. The hazard ratio for all cerebrovascular events was 2.14 (95% CI: 1.87, 2.44) comparing the top versus bottom quartiles of PM2.5. Similarly, there was a statistically significant increase in events comparing the top versus bottom quartiles of PM10 and NO2 (HR: 1.17; 95% CI: 1.03, 1.33 and HR:1.26; 95% CI: 1.12, 1.42). The strength of association did not vary substantially by stroke etiology. There was little evidence of an association between PMcoarse and incident cerebrovascular events. Conclusions: Long-term exposure to fine (PM2.5) and respirable (PM10) particulate matter as well as NO2 was associated with a significant increase of cerebrovascular events among postmenopausal women. Strength of the associations were consistent by stroke etiology

    Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women

    Get PDF
    Background Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Methods Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM2.5), respirable (PM10), and course (PM10–2.5) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. Results During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM2.5, PM10, and PM10–2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM2.5 and PM10 fractions. The association between PM2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. Conclusions In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension

    Long-term aircraft noise exposure and risk of hypertension in postmenopausal women

    Get PDF
    Background: Studies of the association between aircraft noise and hypertension are complicated by inadequate control for potential confounders and a lack of longitudinal assessments, and existing evidence is inconclusive. Objectives: We evaluated the association between long-term aircraft noise exposure and risk of hypertension among post-menopausal women in the Women's Health Initiative Clinical Trials, an ongoing prospective U.S. cohort. Methods: Day-night average (DNL) and night equivalent sound levels (Lnight) were modeled for 90 U.S. airports from 1995 to 2010 in 5-year intervals using the Aviation Environmental Design Tool and linked to participant geocoded addresses from 1993 to 2010. Participants with modeled exposures ≥45 A-weighted decibels (dB [A]) were considered exposed, and those outside of 45 dB(A) who also did not live in close proximity to unmodeled airports were considered unexposed. Hypertension was defined as systolic/diastolic blood pressure ≥140/90 mmHg or inventoried/self-reported antihypertensive medication use. Using time-varying Cox proportional hazards models, we estimated hazard ratios (HRs) for incident hypertension when exposed to DNL or Lnight ≥45 versus <45 dB(A), controlling for sociodemographic, behavioral, and environmental/contextual factors. Results/discussion: There were 18,783 participants with non-missing DNL exposure and 14,443 with non-missing Lnight exposure at risk of hypertension. In adjusted models, DNL and Lnight ≥45 db(A) were associated with HRs of 1.00 (95% confidence interval [CI]: 0.93, 1.08) and 1.06 (95%CI: 0.91, 1.24), respectively. There was no evidence supporting a positive exposure-response relationship, and findings were robust in sensitivity analyses. Indications of elevated risk were seen among certain subgroups, such as those living in areas with lower population density (HRinteraction: 0.84; 95%CI: 0.72, 0.98) or nitrogen dioxide concentrations (HRinteraction: 0.82; 95%CI: 0.71, 0.95), which may indicate lower ambient/road traffic noise. Our findings do not suggest a relationship between aircraft noise and incident hypertension among older women in the U.S., though associations in lower ambient noise settings merit further investigation
    corecore