105 research outputs found

    Analysing the carbon footprint of food

    Get PDF
    In Europe, food consumption is responsible for approximately 30% of total greenhouse gas (GHG) emissions. There has been huge interest in estimating the carbon footprint (CF) of food products, i.e. the total amount of GHG emitted during the life cycle of the product, and communicating these to consumers to enable them to make informed choices. This thesis provides additional knowledge of several related issues regarding calculating and acting on the CF of food products in order to facilitate the design of effective consumer communication strategies. The uncertainty in the CF of Swedish potatoes and pasta was established to investigate the detail to which food CF can be determined. For a well-defined geographical area the uncertainty was in the range ±10-30%, indicating that the CF uncertainty for more complex foods or foods with a more unspecific origin is considerably higher. Emissions of N₂O from soils dominated the emissions and uncertainties, and yield was an influential parameter for all crops. Possible risks of pollution swapping when acting on CF were investigated in the case of meat production. For meat from monogastric animals, in most cases the CF functions as an indicator for land, energy and pesticide use, and for acidification and eutrophication potential, but for ruminant meat there are possible conflicts with biodiversity, energy and pesticide use. In an attempt to develop a tool that communicates the CF of meat in an efficient way, while highlighting important trade-offs, a criteria-based meat guide based on the knowledge gained was developed. A critical review of CF labelling from a consumer perspective showed that obstacles known to prevent purchase of organic foods, e.g. perceived high price and strong habits, apply equally or more so to the purchase of CF labelled foods. Hence, CF labelling of food in a retail setting is of limited effectiveness, but CF values are important in business-to-business communication, in policy development and for developing efficient and scientifically justified consumer communication messages. Quantification of the reduction potential from a commonly recommended option, 'eating seasonal', showed that consuming tomatoes and carrots seasonally in Sweden could reduce the CF by 30-60%. This is a substantial reduction for these products, but a small reduction in view of the total GHG emissions from the complete average diet. This illustrates the importance of calculating CF values of food and setting the results in perspective

    Controlling Sustainability in Swedish Beef Production: Outcomes for Farmers and the Environment

    Get PDF
    Swedish beef and dairy farmers are currently facing a challenging financial situation. Simultaneously, beef farming contributes significant environmental impacts. To support farmers, actors from the whole value chain are now promoting Swedish beef as particularly ‘sustainable’. The paper draws on critical discourse analysis of interviews with and documents from the largest Swedish supermarket chain ICA, Swedish farmer organisations and farmers to study how ICA and farmers articulate sustainability and their responsibility for the same. Articulations are subsequently discussed in the light of actual environmental impacts of beef production and the distribution of power in the beef value chain. The findings suggest that negative environmental impacts and farmers’ struggles are largely hidden in the dominant articulation of sustainability. Furthermore, ICA does not use the power it has to steer consumers toward reduced beef consumption. We conclude with suggesting more open deliberation about current levels of beef sales and consumption and about what compromises to make when striving for ‘sustainable’ beef consumption

    Mat-klimat-listan

    Get PDF
    Den mat vi Àter, och den vi slÀnger, stÄr för en betydande klimatpÄverkan. UtslÀppen mÄste minskas radikalt för att vi ska nÄ de uppsatta klimatmÄlen. Stor potential att minska utslÀppen i produktionsled finns, men vi mÄste ocksÄ förÀndra vilken typ av mat vi Àter dÄ en stor del av utslÀppen kommer frÄn biologiska processer som Àr svÄra att kontrollera. För att fÄ en uppfattning om storleksordningen pÄ utslÀppen frÄn livsmedelskonsumtionen i en viss verksamhet och hur olika val av livsmedel pÄverkar utslÀppen Àr det vÀrdefullt att kvantifiera utslÀppen av vÀxthusgaser sÄ att insatser som planeras och genomförs kan följas upp och utvÀrderas. Det finns tusentals olika livsmedelsprodukter i Sverige. Livscykelanalyser, som berÀknar utslÀppen av vÀxthusgaser per livsmedel, har bara gjorts pÄ en brÄkdel av dessa dÄ de Àr dyra att genomföra och snabbt Äldras. Trots de begrÀnsningar som finns med livscykelanalys har dessa berÀkningar gett vÀrdefull kunskap om storleksordningen pÄ utslÀppen frÄn olika livsmedelsgrupper. Kunskapen kan sÀttas i anvÀndning för att minska klimatpÄverkan frÄn mat, dÄ val mellan olika typer av livsmedel har stor betydelse för matens klimatpÄverkan. Siffrorna som presenteras i Mat-klimat-listan Àr grova skattningar av olika livsmedels klimatavtryck. Ett medelvÀrde och ett variationsintervall anges för en hel kategori livsmedel, t.ex. nötkött, bröd, mjölk etc. Variationen Àr ofta stor inom gruppen, men medelvÀrdet gÀller generellt som en representativ siffra för storleksordningen för de flesta varor inom gruppen. Syftet med Mat-klimat-listan Àr att den ska anvÀndas för översiktliga berÀkningar av vÀxthusgasutslÀpp frÄn livsmedelskonsumtion frÄn en verksamhet eller en viss typ av kosthÄllning. Genom att anvÀnda sig av samma klimatsiffror vid berÀkningar inom kommuner, projekt och annan privat och offentlig verksamhet blir det lÀttare att jÀmföra och utvÀrdera resultaten. Dessutom behöver inte alla genomföra den litteraturstudie som krÀvs för att sammanstÀlla resultaten. Mat-klimat-listan behöver kontinuerligt uppdateras allt eftersom ny kunskap kommer fram och versionshanteras sÄledes. Detta Àr andra versionen av Mat-klimat-listan, version 1.1, som förmodas vara aktuell t.o.m. 2015 och behöver dÀrefter Äterigen utvÀrderas

    KlimatgasutslÀpp frÄn matpotatis

    Get PDF

    Multi-criteria evaluation of plant-based foods -use of environmental footprint and LCA data for consumer guidance

    Get PDF
    Many consumers are willing to move to a more plant-based diet, as is apparent from the increasing demand for plant-based protein sources on many markets. There is scientific evidence that such diets are associated with lower environmental impacts, especially climate impact, land use, and energy use. However, all food production affects the environment, and there is scope for more sustainable food choices even among plant-based foods. We present a method for environmental multi-criteria evaluation of plant-based products to enable communication through a consumer guide, which was developed in cooperation with World Wide Fund for Nature (WWF) Sweden and involves a real-life case of implementation. The guide included 90 products, divided into five product groups. Four environmental impact categories were evaluated (climate impact, biodiversity impact, water use, pesticide use), to give a fuller, more complex picture of potential environmental impacts of plant-based products than when evaluating only one impact category, such as climate impact. Available environmental footprint data and LCA data adapted for the specific consumer market (Sweden) were used. A method for calculating absolute sustainability thresholds for single products was developed, based on newly published global sustainability boundaries for the food system (Willett et al., 2019). To account for the different dietary functions of food, different thresholds for evaluating different food groups were applied, thus accounting for the role, and to some extent the nutrient content, of different food products. This enabled evaluation of foods based on the same grounds, i.e., using the global sustainability boundaries and the same functional unit for all food products (1 kg of food at a store in Sweden), while visualizing differences in environmental impacts of products within a certain food group. This revealed the best choice of protein sources, vegetables, etc. The method provides a way to use large amounts of data of varying quality, and reduces the complexity in evaluating the environmental impacts of food. It therefore hopefully facilitates sustainable plant-based food choices, for more environmentally sustainable food consumption. (C) 2020 The Author(s). Published by Elsevier Ltd

    Kor och klimat

    Get PDF
    Produktion av kött och mjölk frĂ„n idisslare genererar utslĂ€pp av vĂ€xthusgaser i form av metan frĂ„n idisslarnas fodersmĂ€ltning, lustgas och koldioxid frĂ„n foderproduktionen, metan och lustgas frĂ„n gödselhantering samt koldioxid frĂ„n energianvĂ€ndning i stallar och slakterier. Till det kommer utslĂ€pp frĂ„n avskogning i framför allt Sydamerika som orsakas av ökad efterfrĂ„gan pĂ„ foder och betesmark. UtslĂ€ppen frĂ„n djurhĂ„llningen domineras av utslĂ€pp av metan frĂ„n framför allt idisslarnas fodersmĂ€ltning. Metan Ă€r en vĂ€xthusgas som pĂ„ kort sikt vĂ€rmer atmosfĂ€ren betydligt mer Ă€n koldioxid men som bryts ner efter cirka ett decennium, medan en stor del av koldioxiden stannar i atmosfĂ€ren för alltid. Detta innebĂ€r förenklat att konstanta utslĂ€pp av metan inte ytterligare ökar temperaturen eftersom det metan som slĂ€pps ut bara ersĂ€tter det metan som försvinner. Ökade utslĂ€pp av metan ökar dock uppvĂ€rmningen medan minskade utslĂ€pp av metan medför en temperatursĂ€nkning. Minskade utslĂ€pp av koldioxid innebĂ€r dĂ€remot endast en lĂ„ngsammare uppvĂ€rmning av atmosfĂ€ren. Sett över hundra Ă„r och med bĂ„de gasernas uppvĂ€rmande förmĂ„ga och deras livslĂ€ngd beaktat orsakar utslĂ€pp av 1kg metan en klimateffekt som Ă€r 34 gĂ„nger större Ă€n utslĂ€pp av 1 kg koldioxid. Under vissa förhĂ„llanden kan utslĂ€ppen som djurhĂ„llningen orsakar delvis eller helt kompenseras av att marken dĂ€r djurens foder odlas och dĂ€r de betar lagrar in kol genom att en del av kolet i vĂ€xtresterna stabiliseras i marken under nedbrytningsprocessen. Störst potential att lagra in kol har marker med lĂ„gt kolinnehĂ„ll, till exempel överbetade marker eller Ă„kermark dĂ€r ettĂ„riga grödor odlats under lĂ„ng tid. FörĂ€ndrad markanvĂ€ndning, som övergĂ„ng frĂ„n ettĂ„riga grödor till flerĂ„rig vall, leder till att större mĂ€ngder kol tillförs marken. Kolinlagringen avtar med tiden dĂ„ marken intar ett nytt jĂ€mviktslĂ€ge och markkolet kan ocksĂ„ Ă„tergĂ„ till atmosfĂ€ren om markanvĂ€ndningen förĂ€ndras igen, till exempel om vall eller permanenta beten pĂ„ Ă„kermark plöjs upp. Globalt finns betydande potential att lagra in kol i jordbruksmark. Potentialen att lagra in kol Ă€r större i Ă„kermark (globalt 2-7 miljarder ton koldioxid per Ă„r) Ă€n i betesmark (globalt 0,35-1,4 miljarder ton koldioxid per Ă„r). UtslĂ€ppen förknippade med all djurhĂ„llning globalt uppgĂ„r till cirka Ă„tta miljarder ton koldioxidekvivalenter. Kolinlagring i betesmarken globalt kan sĂ„ledes inte kompensera för djurhĂ„llningens eller de betande djurens utslĂ€pp (tvĂ„ miljarder ton koldioxidekvivalenter), och Ă€r betydligt lĂ€gre Ă€n de totala utslĂ€ppen av vĂ€xthusgaser globalt (cirka 50 miljarder ton koldioxidekvivalenter). Detsamma gĂ€ller Ă€ven för Sverige dĂ€r betesmarkerna idag berĂ€knas lagra in mellan 0,1 och 0,3 miljoner ton koldioxid per Ă„r vilket kan jĂ€mföras med utslĂ€ppen frĂ„n idisslarna pĂ„ cirka sex miljoner ton koldioxidekvivalenter per Ă„r eller Sveriges totala utslĂ€pp pĂ„ 53 miljoner ton koldioxidekvivalenter per Ă„r. MĂ€tningar av kolhalten i svensk Ă„kermark tyder pĂ„ att den ökade vallodling som skett i Sverige under de senaste decennierna Ă„rligen ökar inlagringen av kol motsvarande totalt cirka 2,4 miljoner ton koldioxid per Ă„r. Att öka inlagringen av kol i marken och att bibehĂ„lla befintligt markkol Ă€r viktigt för att öka och bibehĂ„lla markens bördighet och Ă€r en viktig del i att minska klimatpĂ„verkan. Produktionssystem med bete har mĂ„nga fördelar, bland annat för djurens vĂ€lfĂ€rd och genom att djuren omvandlar för mĂ€nniskan osmĂ€ltbar biomassa till nĂ€ringsrika livsmedel. Dessutom bidrar abete av svenska naturbetesmarker till att livsmiljöer för mĂ„nga hotade arter bibehĂ„lls. Det Ă€r dock inte troligt att inlagring av kol i betes- och fodermarker helt eller till stor del kan kompensera för de utslĂ€pp av vĂ€xthusgaser som djurhĂ„llningen orsakar utom i enskilda undantagsfall. En klok avvĂ€gning mellan flera miljömĂ„l och sociala aspekter behöver göras för att komma fram till vad som kan anses vara en lagom stor mĂ€ngd idisslare i Sverige och globalt

    Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services

    Get PDF
    To balance trade-offs between livestock's negative environmental impacts and their positive contributions (e.g. maintaining semi-natural grasslands, varied agricultural landscapes and crop rotations), a better understanding is needed of how the supply of ecosystem services differs across farms. We analysed a suite of indicators for non-provisioning ecosystem services on a large subset of Swedish farms (71% of farms, covering 82% of agricultural land) and related these to farm type, farm size and livestock density. The analysed indicators exhibited clear geographical patterns with hotspots especially in less productive regions. Controlling for this spatial variation we still found that small-scale and ruminant farms were associated with more varied landscapes, small-scale habitats, semi-natural grasslands and better crop sequences compared to nearby farms specialised in crop production, while farms specialising in monogastric livestock were associated with less varied landscapes and inferior crop sequences. Results for cultural ecosystem services indicated that farms with more semi-natural grassland were associated with more visitors and more likely located within designated recreation or nature conservation areas

    The role of fats in the transition to sustainable diets

    Get PDF
    In comparison with protein, dietary fat receives little attention in the food system sustainability literature, although we calculate that the average consumption of fats in many populous regions of the world is below nutritional recommendations. Animal products are the major source of dietary fat, particularly in regions with excess fat consumption. We estimate that an additional 45 Mt of dietary fat per year need to be produced and consumed for the global population to reach recommended levels of fat consumption, and we review different strategies to fill this gap sustainably. These strategies include diverting oils currently used for energy production to human consumption, increasing palm oil and peanut oil yields while avoiding further deforestation, developing sustainable cropping systems for the production of rapeseed and soybean oils, increasing the consumption of whole soybeans and derived products, and expanding the use of animal fats already produced

    Modeling price sensitivity in food consumption

    Get PDF
    In this paper we investigate the mitigation possibilities of climate impact weighted food taxes in Sweden. We include 52 food items in a demand system of elasticities, covering most food consumed by the Swedish population. Tax levels are based on the Swedish Carbon tax and would lead to price increases up to SEK 25 (close to EURO 2.5) per kilo product. The possible emission reductions would be just above 200 kilos of CO2e emissions per person and year which corresponds to a 10% decrease from Swedish food consumption. Most important for the reductions are beef, other meats and dairy products. Almost 90% of reductions are from animal products

    Environmental effects of coffee, tea and cocoa- data collection for a consumer guide for plant-based foods

    Get PDF
    In 2020, WWF launched a consumer guide on plant-based products targeting Swedish consumers. The development of the guide is described in a journal paper (Karlsson Potter & Röös, 2021) and the environmental impact of different plant based foods was published in a report (Karlsson Potter, Lundmark, & Röös, 2020). This report was prepared for WWF Sweden to provide scientific background information for complementing the consumer guide with information on coffee, tea and cocoa. This report includes quantitative estimations for several environmental categories (climate, land use, biodiversity and water use) of coffee (per L), tea (per L) and cocoa powder (per kg), building on the previously established methodology for the consumer guide. In addition, scenarios of consumption of coffee, tea and cocoa drink with milk/plant-based drinks and waste at household level, are presented. Tea, coffee and cacao beans have a lot in common. They are tropical perennial crops traditionally grown in the shade among other species, i.e. in agroforestry systems. Today, the production in intensive monocultures has negative impact on biodiversity. Re-introducing agroforestry practices may be part of the solution to improve biodiversity in these landscapes. Climate change will likely, due to changes in temperature, extreme weather events and increases in pests and disease, alter the areas where these crops can be grown in the future. A relatively high ratio of the global land used for coffee, tea and cocoa is certified according to sustainability standards, compared to other crops. Although research on the implications of voluntary standards on different outcomes is inconclusive, the literature supports that certifications have a role in incentivizing more sustainable farming. Coffee, tea and cocoa all contain caffeine and have a high content of bioactive compounds such as antioxidants, and they have all been associated with positive health outcomes. While there is a strong coffee culture in Sweden and coffee contributes substantially to the environmental impact of our diet, tea is a less consumed beverage. Cocoa powder is consumed as a beverage, but substantial amounts of our cocoa consumption is in the form of chocolate. Roasted ground coffee on the Swedish market had a climate impact of 4.0 kg CO2e per kg powder, while the climate impact of instant coffee powder was 11.5 kg CO2e per kg. Per litre, including the energy use for making the coffee, the total climate impact was estimated to 0.25 kg CO2e per L brewed coffee and 0.16 kg CO2e per L for instant coffee. Less green coffee beans are needed to produce the same amount of ready to drink coffee from instant coffee than from brewed coffee. Tea had a climate impact of approximately 6.3 kg CO2 e per kg dry leaves corresponding to an impact of 0.064 CO2e per L ready to drink tea. In the assessment of climate impact per cup, tea had the lowest impact with 0.013 kg CO2e, followed by black instant coffee (0.024 kg CO2e), black coffee (0.038 kg CO2e), and cocoa drink made with milk (0.33 kg CO2e). The climate impact of 1kg cocoa powder on the Swedish market was estimated to 2.8 kg CO2e. Adding milk to coffee or tea increases the climate impact substantially. The literature describes a high proportion of the total climate impact of coffee from the consumer stage due to the electricity used by the coffee machine. However, with the Nordic low-carbon energy mix, the brewing and heating of water and milk contributes to only a minor part of the climate impact of coffee. As in previous research, coffee also had a higher land use, water use and biodiversity impact than tea per L beverage. Another factor of interest at the consumer stage is the waste of prepared coffee. Waste of prepared coffee contributes to climate impact through the additional production costs and electricity for preparation, even though the latter was small in our calculations. The waste of coffee and tea at Summary household level is extensive and measures to reduce the amount of wasted coffee and tea could reduce the environmental impact of Swedish hot drink consumption. For the final evaluation of coffee and tea for the consumer guide, the boundary for the fruit and vegetable group was used. The functional unit for coffee and tea was 1 L prepared beverage without any added milk or sweetener. In the guide, the final evaluation of conventionally grown coffee is that it is ‘yellow’ (‘Consume sometimes’), and for organic produce, ‘light green’ (‘Please consume). The evaluation of conventionally grown tea is that it is ‘light green’, and for organic produce, ‘dark green’ (‘Preferably consume this’). For cocoa, the functional unit is 1 kg of cocoa powder and the boundary was taken from the protein group. The final evaluation of conventionally grown cocoa is that it is ‘orange’ (‘Be careful’), and for organically produced cocoa, ‘light green’
    • 

    corecore