17 research outputs found

    Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes

    Get PDF
    Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission

    The crowns have eyes: multiple opsins found in the eyes of the crown-of-thorns starfish Acanthaster planci

    Get PDF
    Abstract Background Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowledge about diversity within the opsin subclasses and, so far, at least nine types of opsins have been identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors. However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed light on the diversity of opsin usage within echinoderms and help resolve the evolutionary history of opsins. Results Using high-throughput RNA sequencing, we have sequenced and analyzed the transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a mixture of tissues from other organs. At least ten opsins were identified, and eight of them were found significantly differentially expressed in both eyes and radial nerve, with R-opsin being the most highly expressed in the eye. Conclusion This study provides new important insight into the involvement of opsins in visual and nonvisual photoreception. Of relevance, we found the first indication of an r-opsin photopigment expressed in a well-developed visual eye in a deuterostome animal. Additionally, we provided tissue specific A. planci transcriptomes that will aid in future Evo Devo studies

    Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians

    Full text link
    Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or 'unintelligibility', of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis

    Evolutionary loss of melanogenesis in the tunicate Molgula occulta

    Full text link
    Abstract Background Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary significance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages. The nervous system of the motile larva contains melanized cells associated with geotactic and light-sensing organs. It has been suggested that these are homologous to vertebrate neural crest-derived melanocytes. Probably due to ecological adaptation to distinct habitats, several species of tunicates in the Molgulidae family have tailless (anural) larvae that fail to develop sensory organ-associated melanocytes. Here we studied the evolution of Tyrosinase family genes, indispensible for melanogenesis, in the anural, unpigmented Molgula occulta and in the tailed, pigmented Molgula oculata by using phylogenetic, developmental and molecular approaches. Results We performed an evolutionary reconstruction of the tunicate Tyrosinase gene family: in particular, we found that M. oculata possesses genes predicted to encode one Tyrosinase (Tyr) and three Tyrosinase-related proteins (Tyrps) while M. occulta has only Tyr and Tyrp.a pseudogenes that are not likely to encode functional proteins. Analysis of Tyr sequences from various M. occulta individuals indicates that different alleles independently acquired frameshifting short indels and/or larger mobile genetic element insertions, resulting in pseudogenization of the Tyr locus. In M. oculata, Tyr is expressed in presumptive pigment cell precursors as in the model tunicate Ciona robusta. Furthermore, a M. oculata Tyr reporter gene construct was active in the pigment cell precursors of C. robusta embryos, hinting at conservation of the regulatory network underlying Tyr expression in tunicates. In contrast, we did not observe any expression of the Tyr pseudogene in M. occulta embryos. Similarly, M. occulta Tyr allele expression was not rescued in pigmented interspecific M. occulta × M. oculata hybrid embryos, suggesting deleterious mutations also to its cis-regulatory sequences. However, in situ hybridization for transcripts from the M. occulta Tyrp.a pseudogene revealed its expression in vestigial pigment cell precursors in this species. Conclusions We reveal a complex evolutionary history of the melanogenesis pathway in tunicates, characterized by distinct gene duplication and loss events. Our expression and molecular data support a tight correlation between pseudogenization of Tyrosinase family members and the absence of pigmentation in the immotile larvae of M. occulta. These results suggest that relaxation of purifying selection has resulted in the loss of sensory organ-associated melanocytes and core genes in the melanogenesis biosynthetic pathway in M. occulta

    ANISEED 2015: a digital framework for the comparative developmental biology of ascidians

    Full text link
    International audienceAscidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes
    corecore