23 research outputs found

    Parallel random LiDAR with spatial multiplexing of a many-mode laser

    Full text link
    We propose and experimentally demonstrate parallel LiDAR using random intensity fluctuations from a highly multimode laser. We optimize a degenerate cavity to have many spatial modes lasing simultaneously with different frequencies. Their spatio-temporal beating creates ultrafast random intensity fluctuations, which are spatially demultiplexed to generate hundreds of uncorrelated time traces for parallel ranging. The bandwidth of each channel exceeds 10 GHz, leading to a ranging resolution better than 1 cm. Our parallel random LiDAR is robust to cross-channel interference, and will facilitate high-speed 3D sensing and imaging.Comment: 12 pages, 7 figure

    Deep Learning with Passive Optical Nonlinear Mapping

    Full text link
    Deep learning has fundamentally transformed artificial intelligence, but the ever-increasing complexity in deep learning models calls for specialized hardware accelerators. Optical accelerators can potentially offer enhanced performance, scalability, and energy efficiency. However, achieving nonlinear mapping, a critical component of neural networks, remains challenging optically. Here, we introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping, without the need for additional laser power. A key advantage emerging from our work is that we show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information while also decreasing data dimensionality. This allows rapid optical information processing and generation of low dimensional mixtures of highly nonlinear features. These are particularly useful for applications demanding high-speed analysis and responses such as in edge computing devices. Utilizing rapid optical information processing capabilities, our optical platforms could potentially offer more efficient and real-time processing solutions for a broad range of applications. We demonstrate the efficacy of our design in improving computational performance across tasks, including classification, image reconstruction, key-point detection, and object detection, all achieved through optical data compression combined with a digital decoder. Notably, we observed high performance, at an extreme compression ratio, for real-time pedestrian detection. Our findings pave the way for novel algorithms and architectural designs for optical computing.Comment: 16 pages, 7 figure

    Roadmap on Superoscillations

    Get PDF
    Superoscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern studies originated in quantum theory, but there were anticipations in radar and optics. The mathematical understanding—still being explored—recognises that functions are extremely small where they superoscillate; this has implications for information theory. Applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas, providing background, current research, and anticipating future developments
    corecore